Theory of Atmospheric Radiative Transfer


Book Description

Aimed at the senior undergraduate and graduate level, this textbook fills the gap between general introductory texts offering little detail and very technical, advanced books written for mathematicians and theorists rather than experimentalists in the field. The result is a concise course in atmospheric radiative processes, tailored for one semester. The authors are accomplished researchers who know how to reach their intended audience and provide here the content needed to understand climate warming and remote sensing for pollution measurement. They also include supplementary reading for planet scientists and problems. Equally suitable reading for geophysicists, physical chemists, astronomers, environmental chemists and spectroscopists. A solutions manual for lecturers will be provided on www.wiley-vch.de/supplements.




Radiative Transfer in the Atmosphere and Ocean


Book Description

Provides a foundation of the theoretical and practical aspects of radiative transfer, for the atmospheric, oceanic and environmental sciences.







An Introduction to Atmospheric Radiation


Book Description

An Introduction to Atmospheric Radiation




An Introduction to Atmospheric Radiation


Book Description

Fundamentals of radiation for atmospheric applications -- Solar radiation at the top of the atmosphere -- Absorption and scattering of solar radiation in the atmosphere -- Thermal infrared radiation transfer in the atmosphere -- Light scattering by atmospheric particulates -- Principles of radiative transfer in planetary atmospheres -- Application of radiative transfer principles to remote sensing -- Radiation and climate.




Atmospheric Radiative Transfer


Book Description

This book presents the basis of atmospheric radiative transfer for graduate students, as well as for scientists or engineers who want to start work in this domain. It supposes that the reader has reached a general college level in mathematics & physics. The first part covers the theory of radiative energy transfer & is of interest for a larger audience than only the atmospheric scientists. After carefully defining the various quantities characterizing radiation energy & its interaction with matter, the equation of radiative transfer is established & the laws of blackbody emission reviewed. One chapter presents the detection of radiative energy. The next chapters review the problems of quantitative spectroscopy & the transfer of energy in an absorbing & emitting medium. Finally, the laws of scattering are presented & the transfer of radiation in a scattering medium, including polarization, is analyzed.




Radiative Transfer


Book Description

This book by a Nobel Laureate provides the foundation for analysis of stellar atmospheres, planetary illumination, and sky radiation. Suitable for students and professionals in physics, nuclear physics, astrophysics, and atmospheric studies. 1950 edition.




Multiple Scattering of Light by Particles


Book Description

This monograph on multiple scattering of light by small particles is an ideal resource for science professionals, engineers, and graduate students.




Thermal Radiative Transfer and Properties


Book Description

Not only enables readers to include radiation as part of their design and analysis but also appreciate the radiative transfer processes in both nature and engineering systems. Offers two distinguishing features--a whole chapter devoted to the classical dispersion theory which lays a foundation for the discussion of radiative properties presented throughout and a detailed description of particle radiative properties, including real particle size distribution effects. Presents numerous realistic and instructive illustrations and problems involving current topics such as planetary heat transfer, satellite thermal control, atmospheric radiation, radiation in industrial and propulsion combustion systems and more.




Radiation and Cloud Processes in the Atmosphere


Book Description

This is an up-to-date treatment of atmospheric science and the key roles of solar radiation and cloud layers.