Liquid Propellant Rocket Combustion Instability


Book Description

The solution of problems of combustion instability for more effective communication between the various workers in this field is considered. The extent of combustion instability problems in liquid propellant rocket engines and recommendations for their solution are discussed. The most significant developments, both theoretical and experimental, are presented, with emphasis on fundamental principles and relationships between alternative approaches.







Fundamentals of Rocket Propulsion


Book Description

The book follows a unified approach to present the basic principles of rocket propulsion in concise and lucid form. This textbook comprises of ten chapters ranging from brief introduction and elements of rocket propulsion, aerothermodynamics to solid, liquid and hybrid propellant rocket engines with chapter on electrical propulsion. Worked out examples are also provided at the end of chapter for understanding uncertainty analysis. This book is designed and developed as an introductory text on the fundamental aspects of rocket propulsion for both undergraduate and graduate students. It is also aimed towards practicing engineers in the field of space engineering. This comprehensive guide also provides adequate problems for audience to understand intricate aspects of rocket propulsion enabling them to design and develop rocket engines for peaceful purposes.







Liquid Rocket Engine Combustion Instability


Book Description

Annotation Since the invention of the V-2 rocket during World War II, combustion instabilities have been recognized as one of the most difficult problems in the development of liquid propellant rocket engines. This book is the first published in the United States on the subject since NASA's Liquid Rocket Combustion Instability (NASA SP-194) in 1972. In this book, experts cover four major subject areas: engine phenomenology and case studies, fundamental mechanisms of combustion instability, combustion instability analysis, and engine and component testing. Especially noteworthy is the inclusion of technical information from Russia and China--a first.




Theory of Aerospace Propulsion


Book Description

Theory of Aerospace Propulsion, Second Edition, teaches engineering students how to utilize the fundamental principles of fluid mechanics and thermodynamics to analyze aircraft engines, understand the common gas turbine aircraft propulsion systems, be able to determine the applicability of each, perform system studies of aircraft engine systems for specified flight conditions and preliminary aerothermal design of turbomachinery components, and conceive, analyze, and optimize competing preliminary designs for conventional and unconventional missions. This updated edition has been fully revised, with new content, new examples and problems, and improved illustrations to better facilitate learning of key concepts. - Includes broader coverage than that found in most other books, including coverage of propellers, nuclear rockets, and space propulsion to allows analysis and design of more types of propulsion systems - Provides in-depth, quantitative treatments of the components of jet propulsion engines, including the tools for evaluation and component matching for optimal system performance - Contains additional worked examples and progressively challenging end-of- chapter exercises that provide practice for analysis, preliminary design, and systems integration




Technical Abstract Bulletin


Book Description




Space Engineering


Book Description

The 2nd International Conference on Space Engineering took place May 7-10, 1969, at Venice, Italy, under the organization of the Centro Studi Trasporti Missilistici and the Association pour l'Etude et la Recherche Astronautique et Cosmique. Its purpose was to bring together those interested in the technological development of space components, to exchange information by the presentation of papers and to discuss present problems and future trends, and to this end forty-eight papers were presented by distinguished experts from all over the world. The papers were selected from as wide a background as possible, approximately an equal number coming from the academic and research establishments as from industry. The principal criterion for their selection was that they should contribute to the knowledge of Space Engineering, and have application either to the improve ment of current technologies or to the design of more advanced systems for the future. Six pertinent sessions were planned which covered the major areas of interest: (1) Structures and Materials, where three important papers were presented; (2) Guidance and Control Systems, in which six valuable papers were presented, in cluding problems of controlling space ships, details of the inertial guidance system of the ELDO launch vehicle, the attitude control system of the "Europa 2"; (3) Propellants and Combustion, where eleven papers described recent work on solid and liquid rocket engines, advanced fuels and oxidizers, effects of additives, propellant injection, propellant expulsion techniques; (4) Propulsion, in which session ten papers