Theory of Quantum Fluids


Book Description

Theory of Quantum Fluids is a concise report on the microscopic description of liquid 4He and liquid 3He in the physical density range using simple forms of the potential function between pairs of neutral atoms and the properties of the ground states and limited ranges of low excited states. The monograph covers the properties of the radial distribution function and the three-particle distribution particle; the classical sound field and the correspondence principle; paired phonon states in the free- phonon approximation; the uniform limit and the charged boson system; and the microscopic theory of a single 3He atom in the 4He liquid. Theoretical and experimental physicists will find the book very interesting.




Quantum Fluids and Solids


Book Description

The second International Symposium on Quantum Fluids and Solids came to pass during 23-27 Jan. 1977 as the fourth and con cluding part of the seventeenth consecutive running of the Sanibel Symposium Series. With approximately 120 participants from eleven countries (including, for the first time, the USSR), we found it easy to obtain a selection of papers which was fairly comprehen sive. Indeed, our problem was an embarrassment of riches; in spite of our solemn vows not to crowd the schedule, we ended up with an intense program! By far, the majority of the papers pre sented are represented in this volume. We are indebted to many persons and organizations for their contributions to the Symposia. First, we thank Prof. Per-Olov Lowdin, Director of the Quantum Theory Project and originator of the Sanibel Symposia. Without his patient, indulgent cooperation our task would have been vastly more difficult. We are grateful to Prof. F. Eugene Dunnam, Chairman of the Dept. of Physics and Astronomy, for providing Departmental support of our initial or ganlzlng expenses. Approximately one-half of the total cost of the Symposium was borne by a joint grant from the National Science Foundation and the U. S. Air Force Office of Scientific Research. We thank the program officers, Dr. C. Satterthwaite and Dr. D.




Superconductivity and Quantum Fluids


Book Description

Superconductivity and Quantum Fluids, Volume 29 presents the microscopic theory of superconductivity and superfluidity. This book discusses the characteristics of niobium, which is a type II superconductor. Organized into two parts encompassing eight chapters, this volume begins with an overview of the special Bogoliubov transformation that connects fermions with opposite spins and momenta. This text then describes the collective oscillations of the system in the cases of charged and uncharged particles. Other chapters consider the dynamical system of Fermi particles in a weak external field. This book discusses as well the theoretical explanation of superfluidity, which is as a second, very interesting phenomenon observed at low temperatures. The final chapter illustrates the linearized hydrodynamic equations and explains the mean value expressed in terms of the Fourier components of the retarded Green functions. This book is a valuable resource for physicists. Students and researchers who are interested in the fields of superconductivity and superfluidity will also find this book useful.




A Primer on Quantum Fluids


Book Description

The aim of this primer is to cover the essential theoretical information, quickly and concisely, in order to enable senior undergraduate and beginning graduate students to tackle projects in topical research areas of quantum fluids, for example, solitons, vortices and collective modes. The selection of the material, both regarding the content and level of presentation, draws on the authors analysis of the success of relevant research projects with newcomers to the field, as well as of the students feedback from many taught and self-study courses on the subject matter. Starting with a brief historical overview, this text covers particle statistics, weakly interacting condensates and their dynamics and finally superfluid helium and quantum turbulence. At the end of each chapter (apart from the first) there are some exercises. Detailed solutions can be made available to instructors upon request to the authors.







New Approaches to Problems in Liquid State Theory


Book Description

The theory of simple and complex fluids has made considerable recent progress, due to the emergence of new concepts and theoretical tools, and also to the availability of a large body of new experimental data on increas ingly complex systems, as well as far-reaching methodological developments in numerical simulations. This AS! aimed at providing a comprehensive overview of the most significant theoretical developments, supplemented by a few presentations of cutting-edge simulation and experimental work. The impact of the Institute in the overall landscape of Statistical Mechanics received an important recognition with its inclusion in the list of satellite events of STATPHYS20, the triennal international conference on Statistical Physics held in Paris in July 1998. These Proceedings contain the texts of the 13 Lecture Courses and 9 Invited Seminars delivered at Patti. Two clear trends emerge from these Proceedings: first, the diversity of new and unexpected theoretical results relating to classic models of liq uids, which have recently been subjected to fresh scrutiny; and secondly the parallel emergence of new concepts, models and methods, aimed at investigating complex fluids and phenomena, like the phase behaviour of fluids in pores, macromolecular assemblies, and the glass transition. Many of the new tools have their roots in traditional liquid state theory, and, in conjunction with fresh input from related fields, allow it wider applicability.




Modern Many-particle Physics: Atomic Gases, Quantum Dots And Quantum Fluids


Book Description

An important part of this book is devoted to the description of homogenous systems, such as electron gas in different dimensions, the quantum well in an intense magnetic field, liquid helium and nuclear matter. However, the most relevant part is dedicated to the study of finite systems: metallic clusters, quantum dots, the condensate of cold and diluted atoms in magnetic traps, helium drops and nuclei. The book focuses on methods of getting good numerical approximations to energies and linear response based on approximations to first-principles Hamiltonians. These methods are illustrated and applied to Bose and Fermi systems at zero and finite temperature.Modern Many-Particle Physics is directed towards students who have taken a conventional course in quantum mechanics and possess a basic understanding of condensed matter phenomena.




Physics of Quantum Fluids


Book Description

The study of quantum fluids, stimulated by the discovery of superfluidity in liquid helium, has experienced renewed interest after the observation of Bose-Einstein condensation (BEC) in ultra-cold atomic gases and the observation a new type of quantum fluid with specific characteristics derived from its intrinsic out-of-equilibrium nature. The main objective of this book is to take a snapshot of the state-of-the-art of this fast moving field with a special emphasis on the hot topics and new trends. Bringing together the most active specialists of the two areas (atomic and polaritonic quantum fluids), we expect that this book will facilitate the exchange and the collaboration between these two communities working on subjects with very strong analogies.