Therapeutic Enzymes: Function and Clinical Implications


Book Description

Therapeutic enzymes exhibit fascinating features and opportunities, and represent a significant and promising subcategory of modern biopharmaceuticals for the treatment of several severe diseases. Research and drug developments efforts and the advancements in biotechnology over the past twenty years have greatly assisted the introduction of efficient and safe enzyme-based therapies for a range of both rare and common disorders. The introduction and regulatory approval of twenty different recombinant enzymes has enabled effective enzyme-replacement therapy. This volume aims to overview these therapeutic enzymes, focusing in particular on more recently approved enzymes produced by recombinant DNA technology. This volume is composed of four sections. Section 1 provides an overview of the production process and biochemical characterization of therapeutic enzymes, while Section 2 focuses upon the engineering strategies and delivery methods of therapeutic enzymes. Section 3 highlights the clinical applications of approved therapeutic enzymes, including aspects on their structure, indications and mechanisms of action. Together with information on these mechanisms, safety and immunogenicity issues and various adverse events of the recombinant enzymes used for therapy are discussed. Section 4, provides discussion on the prospective and future developments of new therapeutic enzymes. This book is aimed at academics, researchers and students undertaking advanced undergraduate/postgraduate programs in the biopharmaceutical/biotechnology area who wish to gain a comprehensive understanding of enzyme-based therapeutic molecules.




Directed Enzyme Evolution: Advances and Applications


Book Description

This book focuses on some of the most significant advances in enzyme engineering that have been achieved through directed evolution and hybrid approaches. On the 25th anniversary of the discovery of directed evolution, this volume is a tribute to the pioneers of this thrilling research field, and at the same time provides a comprehensive overview of current research and the state of the art. Directed molecular evolution has become the most reliable and robust method to tailor enzymes, metabolic pathways or even whole microorganisms with improved traits. By mirroring the Darwinian algorithm of natural selection on a laboratory scale, new biomolecules of invaluable biotechnological interest can now be engineered in a manner that surpasses the boundaries of nature. The volume is divided into two sections, the first of which provides an update on recent successful cases of enzyme ensembles from different areas of the biotechnological spectrum, including tryptophan synthases, unspecific peroxygenases, phytases, therapeutic enzymes, stereoselective enzymes and CO2-fixing enzymes. This section also provides information on the directed evolution of whole cells. The second section of the book summarizes a variety of the most applicable methods for library creation, together with the future trends aimed at bringing together directed evolution and in silico/computational enzyme design and ancestral resurrection.




Drug Discovery in Cancer Epigenetics


Book Description

Drug Discovery in Cancer Epigenetics is a practical resource for scientists involved in the discovery, testing, and development of epigenetic cancer drugs. Epigenetic modifications can have significant implications for translational science as biomarkers for diagnosis, prognosis or therapy prediction. Most importantly, epigenetic modifications are reversible and epigenetic players are found mutated in different cancers; therefore, they provide attractive therapeutic targets. There has been great interest in developing and testing epigenetic drugs, which inhibit DNA methyltransferases, histone modifying enzymes or chromatin reader proteins. The first few drugs are already FDA approved and have made their way into clinical settings. This book provides a comprehensive summary of the epigenetic drugs currently available and aims to increase awareness in this area to foster more rapid translation of epigenetic drugs into the clinic. - Highlights the potential of epigenetic alterations in cancer for drug development - Covers the tools and methods for epigenetic drug discovery, preclinical and clinical testing, and clinical implications of epigenetic therapy - Provides important information regarding putative epigenetic targets, epigenetic technologies, networks and consortia for epigenetic drug discovery and routes for translation




Histone Deacetylases: the Biology and Clinical Implication


Book Description

The book highlights work from many different labs that taught us abnormal HDACs potentially contribute to the development or progression of many human diseases including immune dysfunctions, heart disease, cancer, memory impairment, aging, and metabolic disorders.




Biotechnology of Microbial Enzymes


Book Description

Biotechnology of Microbial Enzymes: Production, Biocatalysis, and Industrial Applications, Second Edition provides a complete survey of the latest innovations on microbial enzymes, highlighting biotechnological advances in their production and purification along with information on successful applications as biocatalysts in several chemical and industrial processes under mild and green conditions. The application of recombinant DNA technology within industrial fermentation and the production of enzymes over the last three decades have produced a host of useful chemical and biochemical substances. The power of these technologies results in novel transformations, better enzymes, a wide variety of applications, and the unprecedented development of biocatalysts through the ongoing integration of molecular biology methodology, all of which is covered insightfully and in-depth within the book. This fully revised, second edition is updated to address the latest research developments and applications in the field, from microbial enzymes recently applied in drug discovery to penicillin biosynthetic enzymes and penicillin acylase, xylose reductase, and microbial enzymes used in antitubercular drug design. Across the chapters, the use of microbial enzymes in sustainable development and production processes is fully considered, with recent successes and ongoing challenges highlighted. - Explores advances in microbial enzymes from basic science through application in multiple industry sectors - Includes up-to-date discussions of metabolic pathway engineering, metagenomic screening, microbial genomes, extremophiles, rational design, directed evolution, and more - Provides a holistic approach to the research of microbial enzymes and their use in sustainable processes and innovation - Features all new chapters discussing microbial enzyme classes of growing interest, as well as enzymes recently applied in drug discovery and other applications




Drug Design of Zinc-Enzyme Inhibitors


Book Description

Brings together functional and structural informationrelevant to the design of drugs targeting zinc enzymes The second most abundant transition element in living organisms, zinc spans all areas of metabolism, with zinc-containing proteins offering both established and potential drug targets. Drug Design of Zinc-Enzyme Inhibitors brings together functional and structural information relevant to these zinc-containing targets. With up-to-date overviews of the latest developments field, this unique and comprehensive text enables readers to understand zinc enzymes and evaluate them in a drug design context. With contributions from the leaders of today's research, Drug Design of Zinc-Enzyme Inhibitors covers such key topics as: Major drug targets like carbonic anhydrases, matrix metalloproteinases, bacterial proteases, angiotensin-converting enzyme, histone deacetylase, and APOBEC3G Roles of recently discovered zinc-containing isozymes in cancer, obesity, epilepsy, pain management, malaria, and other conditions Cross reactivity of zinc-enzyme inhibitors and activators The extensive use of X-ray crystallography and QSAR studies for understanding zinc-containing proteins Clinical applications An essential resource for the discovery and development of new drug molecules, Drug Design of Zinc-Enzyme Inhibitors gives researchers, professionals, students, and academics the foundation to understand and work with zinc enzyme inhibitors and activators.




Bioresources and Bioprocess in Biotechnology


Book Description

This book is a compilation of detailed articles on various products and services that can be derived from bioresources through bioprocess. It offers in-depth discussions and case studies on commercially and therapeutically important enzymes, antimicrobials, anti-cancer molecules and anti-inflammatory substances. It also includes a separate section on emerging trends in bioactive substances research. This unique book is a valuable source of information for biotechnologists and bioprocess experts as well as academics and researchers who are actively involved in product and process development.







Enzyme- and Transporter-Based Drug-Drug Interactions


Book Description

Germination of the thought of "Enzymatic- and Transporter-Based Drug-Drug Interactions: Progress and Future Challenges" Proceedings came about as part of the annual meeting of The American Association of Pharmaceutical Scientists (AAPS) that was held in San Diego in November of 2007. The attendance of workshop by more than 250 pharmaceutical scientists reflected the increased interest in the area of drug-drug interactions (DDIs), the greater focus of PhRMA, academia, and regulatory agencies, and the rapid pace of growth in knowledge. One of the aims of the workshop was to address the progress made in quantitatively predicting enzyme- and transporter-based DDIs as well as highlighted areas where such predictions are poor or areas that remain challenging for the future. Because of the serious clinical implications, initiatives have arisen from the FDA (http://www.fda.gov/cber/gdlns/interactstud.htm) to highlight the importance of enzyme- and transporter-based DDIs. During the past ten to fifteen years, we have come to realize that transporters, in addition to enzymes, play a vital role in drug elimination. Such insight has been possible because of the continued growth in PK-ADME (pharmacokinetics-absorption-distribution-metabolism-excretion) knowledge, fueled by further advances in molecular biology, greater availability of human tissues, and the development of additional and sophisticated model systems and sensitive assay methods for studying drug metabolism and transport in vitro and in vivo. This has sparked an in-depth probing into mechanisms surrounding DDIs, resulting from ligand-induced changes in nuclear receptors, as well as alterations in transporter and enzyme expression and function. Despite such advances, the in vitro and in vivo study of drug interactions and the integration of various data sets remain challenging. Therefore, it has become apparent that a proceeding that serves to encapsulate current strategies, approaches, methods and applications is necessary. As Editors, we have assembled a number of opinion leaders and asked them to contribute chapters surrounding these issues. Many of these are the original Workshop speakers whereas others had been selected specially to contribute on topics related to basic and applied information that had not been covered in other reference texts on DDI. The resulting tome, entitled Enzyme- and Transporter-Based Drug Interactions: Progress and Future Challenges, comprises of four sections. Twenty-eight chapters covering various topics and perspectives related to the subject of metabolic and transporter-based drug-drug interactions are presented.




Microbial Enzymes and Metabolites for Health and Well-Being


Book Description

This up-to-date reference book discusses the synthesis, production, and application of various microbial enzymes and metabolites for health. Microorganisms like bacteria (lactic acid bacteria, Bacillus species), yeasts, and filamentous fungi have been globally exploited for their biotechnological applications. This book discusses ways to use them commercially. Chapters include the production of fibrinolytic enzymes, microbial lipases, bacteriocin production by lactic acid bacteria, and bioactives produced. It also covers microbial synthesis of alkaloids, terpenoids, and steroids. This book is useful for researchers, academicians, and industry experts in microbiology and biotechnology.