Thermodynamics Kept Simple - A Molecular Approach


Book Description

Thermodynamics Kept Simple - A Molecular Approach: What is the Driving Force in the World of Molecules? offers a truly unique way of teaching and thinking about basic thermodynamics that helps students overcome common conceptual problems. For example, the book explains the concept of entropy from the perspective of probabilities of various molecula




Colloidal Foundations of Nanoscience


Book Description

Colloidal Foundations of Nanoscience, Second Edition explores the theory and concepts of colloid chemistry and its applications to nanoscience and nanotechnology. The book provides the essential conceptual and methodological tools to approach nano-research issues. The authors’ expertise in colloid science will contribute to the understanding of basic issues involved in research. Each chapter covers a classical subject of colloid science in simple and straightforward terms, addressing its relevance to nanoscience before introducing case studies. Sections cover colloids rheology, electrokinetics, nanoparticle tracking analysis (NTA), bio-layer interferometry, and the treatment of inter-particle interactions and colloidal stability. Gathers, in a single volume, information currently scattered across various sources Provides a straightforward introduction on theoretical concepts and in-depth case studies to help readers understand molecular mechanisms and master advanced techniques Includes examples showing the applications of classical concepts to real-world cutting-edge research Edited and written by highly respected quality scientists




Statistical Mechanics of Liquids and Solutions


Book Description

The statistical mechanical theory of liquids and solutions is a fundamental area of physical sciences with important implications for many industrial applications. This book shows how you can start from basic laws for the interactions and motions of microscopic particles and calculate how macroscopic systems of these particles behave, thereby explaining properties of matter at the scale that we perceive. Using this microscopic, molecular approach, the text emphasizes clarity of physical explanations for phenomena and mechanisms relevant to fluids, addressing the structure and behavior of liquids and solutions under various conditions. A notable feature is the author’s treatment of forces between particles that include nanoparticles, macroparticles, and surfaces. The book also provides an expanded, in-depth treatment of polar liquids and electrolytes.




Molecular Driving Forces


Book Description

Molecular Driving Forces, Second Edition E-book is an introductory statistical thermodynamics text that describes the principles and forces that drive chemical and biological processes. It demonstrates how the complex behaviors of molecules can result from a few simple physical processes, and how simple models provide surprisingly accurate insights into the workings of the molecular world. Widely adopted in its First Edition, Molecular Driving Forces is regarded by teachers and students as an accessible textbook that illuminates underlying principles and concepts. The Second Edition includes two brand new chapters: (1) "Microscopic Dynamics" introduces single molecule experiments; and (2) "Molecular Machines" considers how nanoscale machines and engines work. "The Logic of Thermodynamics" has been expanded to its own chapter and now covers heat, work, processes, pathways, and cycles. New practical applications, examples, and end-of-chapter questions are integrated throughout the revised and updated text, exploring topics in biology, environmental and energy science, and nanotechnology. Written in a clear and reader-friendly style, the book provides an excellent introduction to the subject for novices while remaining a valuable resource for experts.




Molecular Thermodynamics


Book Description

QUANTUM MECHANICS; STATISTICAL MECHANICS; FIRST LAW AND THERMOCHEMISTRY; SECOND LAWAND FREE ENERGY; THERMODYNAMICS OF PHASE CHANGES AND CHEMICAL REACTIONS; SOLUTIONS; THERMODYNAMICS AND LIVING SYSTEMS.




Modern Engineering Thermodynamics


Book Description

Modern Engineering Thermodynamics is designed for use in a standard two-semester engineering thermodynamics course sequence. The first half of the text contains material suitable for a basic Thermodynamics course taken by engineers from all majors. The second half of the text is suitable for an Applied Thermodynamics course in mechanical engineering programs. The text has numerous features that are unique among engineering textbooks, including historical vignettes, critical thinking boxes, and case studies. All are designed to bring real engineering applications into a subject that can be somewhat abstract and mathematical. Over 200 worked examples and more than 1,300 end of chapter problems provide opportunities to practice solving problems related to concepts in the text. Provides the reader with clear presentations of the fundamental principles of basic and applied engineering thermodynamics. Helps students develop engineering problem solving skills through the use of structured problem-solving techniques. Introduces the Second Law of Thermodynamics through a basic entropy concept, providing students a more intuitive understanding of this key course topic. Covers Property Values before the First Law of Thermodynamics to ensure students have a firm understanding of property data before using them. Over 200 worked examples and more than 1,300 end of chapter problems offer students extensive opportunity to practice solving problems. Historical Vignettes, Critical Thinking boxes and Case Studies throughout the book help relate abstract concepts to actual engineering applications. For greater instructor flexibility at exam time, thermodynamic tables are provided in a separate accompanying booklet. Available online testing and assessment component helps students assess their knowledge of the topics. Email [email protected] for details.




Introduction to Molecular Thermodynamics


Book Description

Starting with just a few basic principles of probability and the distribution of energy, this book takes students on a trip into the inner workings of the molecular world, from probability to Gibbs' energy and beyond, following a logical, step-by-step progression of ideas.




Thermodynamics and Statistical Mechanics


Book Description

Learn classical thermodynamics alongside statistical mechanics and how macroscopic and microscopic ideas interweave with this fresh approach to the subjects.







Molecular Thermodynamics Of Electrolyte Solutions (Second Edition)


Book Description

Electrolytes and salt solutions are ubiquitous in chemical industry, biology and nature. This unique compendium introduces the elements of the solution properties of ionic mixtures. In addition, it also serves as a bridge to the modern researches into the molecular aspects of uniform and non-uniform charged systems. Notable subjects include the Debye-Hückel limit, Pitzer's formulation, Setchenov salting-out, and McMillan-Mayer scale. Two new chapters on industrial applications — natural gas treating, and absorption refrigeration, are added to make the book current and relevant.This textbook is eminently suitable for undergraduate and graduate students. For practicing engineers without a background in salt solutions, this introductory volume can also be used as a self-study.