Statistical Thermodynamics and Kinetic Theory


Book Description

Direct, accessible approach covers elementary statistical thermodynamics, statistical thermodynamics of interacting systems and solids, kinetic theory, and new concepts for treating equilibrium and nonequilibrium statistical processes. Many examples, end-of-chapter problems with solutions. Appendixes. 1990 edition.







Thermodynamics, Kinetic Theory, and Statistical Thermodynamics


Book Description

This text is a major revision of An Introduction to Thermodynamics, Kinetic Theory, and Statistical Mechanics by Francis Sears. The general approach has been unaltered and the level remains much the same, perhaps being increased somewhat by greater coverage. The text is particularly useful for advanced undergraduates in physics and engineering who have some familiarity with calculus.




Thermodynamics, Kinetic Theory, and Statistical Thermodynamics


Book Description

This text is a major revision of An Introduction to Thermodynamics, Kinetic Theory, and Statistical Mechanics by Francis Sears. The general approach has been unaltered and the level remains much the same, perhaps being increased somewhat by greater coverage. The text is particularly useful for advanced undergraduates in physics and engineering who have some familiarity with calculus.




Statistical Mechanics, Kinetic theory, and Stochastic Processes


Book Description

Statistical Mechanics, Kinetic Theory, and Stochastic Processes presents the statistical aspects of physics as a "living and dynamic" subject. In order to provide an elementary introduction to kinetic theory, physical systems in which particle-particle interaction can be neglected are considered. Transport phenomena in the free-molecular flow region for gases and the transport of thermal radiation are discussed. Discrete random processes such as random walk, binomial and Poisson distributions, and throwing of dice are studied by means of the characteristic function. Comprised of 11 chapters, this book begins with an introduction to the mass point gas as well as some elementary properties of space and velocity distributions. The discussion then turns to radiation and its interaction with an atom; probability, statistics, and conditional probability; intermolecular interactions; transport phenomena; and statistical thermodynamics. Molecular systems at low densities are also considered, together with non-ideal and real gases; liquids and solids; and stochastic processes, noise, and fluctuations. In particular, the response of atoms and molecules to perturbations and scattering by crystals, liquids, and high-pressure gases are examined. This monograph will be useful for undergraduate students, practitioners, and researchers in physics.




Statistical Thermodynamics


Book Description

Clearly connects macroscopic and microscopic thermodynamics and explains non-equilibrium behavior in kinetic theory and chemical kinetics.




Thermal Physics


Book Description

An introduction to thermal physics which combines both a macroscopic and microscopic approach for each method, giving a basis for further studies of the properties of matter, whether from a thermodynamic or statistical angle.




Introduction to Thermodynamics and Kinetic Theory of Matter


Book Description

Imparts the similarities and differences between ratified and condensed matter, classical and quantum systems as well as real and ideal gases. Presents the quasi-thermodynamic theory of gas-liquid interface and its application for density profile calculation within the van der Waals theory of surface tension. Uses inductive logic to lead readers from observation and facts to personal interpretation and from specific conclusions to general ones.




Non-Equilibrium Statistical Mechanics


Book Description

Groundbreaking monograph by Nobel Prize winner for researchers and graduate students covers Liouville equation, anharmonic solids, Brownian motion, weakly coupled gases, scattering theory and short-range forces, general kinetic equations, more. 1962 edition.




Statistical Thermodynamics of Nonequilibrium Processes


Book Description

The structure of the theory ofthermodynamics has changed enormously since its inception in the middle of the nineteenth century. Shortly after Thomson and Clausius enunciated their versions of the Second Law, Clausius, Maxwell, and Boltzmann began actively pursuing the molecular basis of thermo dynamics, work that culminated in the Boltzmann equation and the theory of transport processes in dilute gases. Much later, Onsager undertook the elucidation of the symmetry oftransport coefficients and, thereby, established himself as the father of the theory of nonequilibrium thermodynamics. Com bining the statistical ideas of Gibbs and Langevin with the phenomenological transport equations, Onsager and others went on to develop a consistent statistical theory of irreversible processes. The power of that theory is in its ability to relate measurable quantities, such as transport coefficients and thermodynamic derivatives, to the results of experimental measurements. As powerful as that theory is, it is linear and limited in validity to a neighborhood of equilibrium. In recent years it has been possible to extend the statistical theory of nonequilibrium processes to include nonlinear effects. The modern theory, as expounded in this book, is applicable to a wide variety of systems both close to and far from equilibrium. The theory is based on the notion of elementary molecular processes, which manifest themselves as random changes in the extensive variables characterizing a system. The theory has a hierarchical character and, thus, can be applied at various levels of molecular detail.