Thermodynamics: Principles And Applications


Book Description

This eminently readable introductory text provides a sound foundation to understand the abstract concepts used to express the laws of thermodynamics. The emphasis is on the fundamentals rather than spoon-feeding the subject matter. The concepts are explained with utmost clarity in simple and elegant language. It provides the background material needed for students to solve practical problems related to thermodynamics. Answers to all problems are provided.




Thermodynamics


Book Description

There are many thermodynamics texts on the market, yet most provide a presentation that is at a level too high for those new to the field. This second edition of Thermodynamics continues to provide an accessible introduction to thermodynamics, which maintains an appropriate rigor to prepare newcomers for subsequent, more advanced topics. The book p




Thermodynamics: Principles And Applications (Second Edition)


Book Description

'This method of teaching really helps the reader to understand these sometimes-difficult concepts of thermodynamics, especially with concepts such as Gibbs free energy, enthalpy and entropy … anyone who wants to either learn about thermodynamics or get a very good refresher will find this book to be one of the best at explaining these abstract concepts.'IEEE Electrical Insulation MagazineThermodynamics is considered the core engineering course in many engineering disciplines. Since the laws of thermodynamics are expressed in abstract terms, it is the one of the most challenging courses encountered by students during their undergraduate education.This eminent compendium provides a firm grasp of the abstract concepts, and shows how to apply these concepts to solve practical problems with numerous clear examples. Answers to all problems are provided. Four additional chapters are illuminated to show students how to deal with the thermodynamic problems involving nonideal pure substances as well as multicomponent mixtures. The concepts are highlighted with utmost clarity in simple language. Mathcad worksheets are provided in problems dealing with the cubic equations of state.This readable reference text is useful to researchers, academics, professionals, undergraduate and graduate students in chemical engineering, mechanical engineering and energy studies.




Chemical Thermodynamics: Advanced Applications


Book Description

This book is an excellent companion to Chemical Thermodynamics: Principles and Applications. Together they make a complete reference set for the practicing scientist. This volume extends the range of topics and applications to ones that are not usually covered in a beginning thermodynamics text. In a sense, the book covers a "middle ground" between the basic principles developed in a beginning thermodynamics textbook, and the very specialized applications that are a part of an ongoing research project. As such, it could prove invaluable to the practicing scientist who needs to apply thermodynamic relationships to aid in the understanding of the chemical process under consideration. The writing style in this volume remains informal, but more technical than in Principles and Applications. It starts with Chapter 11, whichsummarizes the thermodynamic relationships developed in this earlier volume. For those who want or need more detail, references are given tothe sections in Principles and Applications where one could go to learn more about the development, limitations, and conditions where these equations apply. This is the only place where Advanced Applications ties back to the previous volume. Chapter 11 can serve as a review of the fundamental thermodynamic equations that are necessary for the more sophisticated applications described in the remainder of this book. This may be all that is necessary for the practicing scientist who has been away from the field for some time and needs some review. The remainder of this book applies thermodynamics to the description of a variety of problems. The topics covered are those that are probably of the most fundamental and broadest interest. Throughout the book, examples of "real" systems are used as much as possible. This is in contrast to many books where "generic" examples are used almost exclusively. A complete set of references to all sources of data and to supplementary reading sources is included. Problems are given at the end of each chapter. This makes the book ideally suited for use as a textbook in an advanced topics course in chemical thermodynamics. - An excellent review of thermodynamic principles and mathematical relationships along with references to the relevant sections in Principles and Applications where these equations are developed - Applications of thermodynamics in a wide variety of chemical processes, including phase equilibria, chemical equilibrium, properties of mixtures, and surface chemistry - Case-study approach to demonstrate the application of thermodynamics to biochemical, geochemical, and industrial processes - Applications at the "cutting edge" of thermodynamics - Examples and problems to assist in learning - Includes a complete set of references to all literature sources




Thermodynamics


Book Description

Although the focus of this textbook is on traditional thermodynamics topics, the book is concerned with introducing the thermal-fluid sciences as well. It is designed for the instructor to select topics and seamlessly combine them with material from other chapters. Pedagogical devices include: learning objectives, chapter overviews and summaries, historical perspectives, and numerous examples, questions, problems and lavish illustrations. Students are encouraged to use the National Institute of Science and Technology (NIST) online properties database.




Thermodynamics: Basic Principles and Engineering Applications


Book Description

This textbook is for a one semester introductory course in thermodynamics, primarily for use in a mechanical or aerospace engineering program, although it could also be used in an engineering science curriculum. The book contains a section on the geometry of curves and surfaces, in order to review those parts of calculus that are needed in thermodynamics for interpolation and in discussing thermodynamic equations of state of simple substances. It presents the First Law of Thermodynamics as an equation for the time rate of change of system energy, the same way that Newton’s Law of Motion, an equation for the time rate of change of system momentum, is presented in Dynamics. Moreover, this emphasis illustrates the importance of the equation to the study of heat transfer and fluid mechanics. New thermodynamic properties, such as internal energy and entropy, are introduced with a motivating discussion rather than by abstract postulation, and connection is made with kinetic theory. Thermodynamic properties of the vaporizable liquids needed for the solution of practical thermodynamic problems (e.g. water and various refrigerants) are presented in a unique tabular format that is both simple to understand and easy to use. All theoretical discussions throughout the book are accompanied by worked examples illustrating their use in practical devices. These examples of the solution of various kinds of thermodynamic problems are all structured in exactly the same way in order to make, as a result of the repetitions, the solution of new problems easier for students to follow, and ultimately, to produce themselves. Many additional problems are provided, half of them with answers, for students to do on their own.




Thermodynamics


Book Description

This book provides a concise overview of thermodynamics, and is written in a manner which makes the difficult subject matter understandable. Thermodynamics is systematic in its presentation and covers many subjects that are generally not dealt with in competing books such as: Carathéodory's approach to the Second Law, the general theory of phase transitions, the origin of phase diagrams, the treatment of matter subjected to a variety of external fields, and the subject of irreversible thermodynamics.The book provides a first-principles, postulational, self-contained description of physical and chemical processes. Designed both as a textbook and as a monograph, the book stresses the fundamental principles, the logical development of the subject matter, and the applications in a variety of disciplines. This revised edition is based on teaching experience in the classroom, and incorporates many exercises in varying degrees of sophistication. The stress laid on a didactic, logical presentation, and on the relation between theory and experiment should provide a reader with a more intuitive understanding of the basic principles.Graduate students and professional chemists in physical chemistry and inorganic chemistry, as well as graduate students and professionals in physics who wish to acquire a more sophisticated overview of thermodynamics and related subject matter will find this book extremely helpful. - Takes the reader through various steps to understanding - Review of fundamentals - Development of subject matter - Applications in a variety of disciplines




Elements of Environmental Engineering


Book Description

Revised, updated, and rewritten where necessary, but keeping the clear writing and organizational style that made previous editions so popular, Elements of Environmental Engineering: Thermodynamics and Kinetics, Third Edition contains new problems and new examples that better illustrate theory. The new edition contains examples with practical flavor such as global warming, ozone layer depletion, nanotechnology, green chemistry, and green engineering. With detailed theoretical discussion and principles illuminated by numerical examples, this book fills the gaps in coverage of the principles and applications of kinetics and thermodynamics in environmental engineering and science. New topics covered include: Green Chemistry and Engineering Biological Processes Life Cycle Analysis Global Climate Change The author discusses the applications of thermodynamics and kinetics and delineates the distribution of pollutants and the interrelationships between them. His demonstration of the theoretical foundations of chemical property estimations gives students an in depth understanding of the limitations of thermodynamics and kinetics as applied to environmental fate and transport modeling and separation processes for waste treatment. His treatment of the material underlines the multidisciplinary nature of environmental engineering. This book is unusual in environmental engineering since it deals exclusively with the applications of chemical thermodynamics and kinetics in environmental processes. The book’s multimedia approach to fate and transport modeling and in pollution control design options provides a science and engineering treatment of environmental problems.




Principles of Thermodynamics


Book Description

An introductory textbook presenting the key concepts and applications of thermodynamics, including numerous worked examples and exercises.




Principles of Thermodynamics and Statistical Mechanics


Book Description

A thorough exploration of the universal principles of thermodynamics and statistical mechanics, this volume takes an applications-oriented approach to a multitude of situations arising in physics and engineering. 1987 edition.