Thermophilic Fungi


Book Description

During the war years, 1944 to 1946, the second author (R.E.) had an unusual opportunity to become familiar with almost all the known thermophilic fungi. He was serving as Microbiologist, with Dr. Paul J. Allen, in the Guayule Rubber Extraction Research Unit of the United States Department of Agriculture at Salinas, California. The Microbiology Laboratory was engaged in a detailed investigation of guayule retting, a process in which the rubber-producing shrub, Parthenium argentatum, wass subjected to microbial action in order to yield a rubber of improved quality.




Thermophilic Fungi


Book Description

This book aims to fill the gap by documenting thermophilic fungi discovered over the past five decades. The chapters spans from covering basic aspects, taxonomy and classification including molecular phyologeny and biotechnological applications of thermophilic fungi.




Fungi in Extreme Environments: Ecological Role and Biotechnological Significance


Book Description

Over the last decades, scientists have been intrigued by the fascinating organisms that inhabit extreme environments. These organisms, known as extremophiles, thrive in habitats which for other terrestrial life-forms are intolerably hostile or even lethal. Based on such technological advances, the study of extremophiles has provided, over the last few years, ground-breaking discoveries that challenge the paradigms of modern biology. In the new bioeconomy, fungi in general, play a very important role in addressing major global challenges, being instrumental for improved resource efficiency, making renewable substitutes for products from fossil resources, upgrading waste streams to valuable food and feed ingredients, counteracting life-style diseases and antibiotic resistance through strengthening the gut biota, making crop plants more robust to survive climate change conditions, and functioning as host organisms for production of new biological drugs. This range of new uses of fungi all stand on the shoulders of the efforts of mycologists over generations. The book is organized in five parts: (I) Biodiversity, Ecology, Genetics and Physiology of Extremophilic Fungi, (II) Biosynthesis of Novel Biomolecules and Extremozymes (III) Bioenergy and Biofuel synthesis, and (IV) Wastewater and biosolids treatment, and (V) Bioremediation.




Fungal Ecology


Book Description

Fungi play vital roles in all ecosystems, as decomposers, symbionts of animals and plants and as parasites. Thus their ecology is of great interest. It has been estimated that there may be as many as 1. 5 million species of fungi, many of which are still undescribed. These interact in various ways with their hosts, with their substrates, with their competitors (including other fungi) and with abiotic variables of their environment. They show great variation in morphology, reproduction, life cycles and modes of dispersal. They grow in almost every conceivable habitat where organic carbon is available: on rock surfaces, in soil, the sea and in fresh water, at extremes of high and low temperature, on dry substrata and in concen trated solutions. Fungal ecology is therefore an enormous subject and its literature is voluminous. In view of this we have had to be selective in the material we have included in this book. We have chosen to concentrate on subjects in which we have some personal experience through either research or teaching. We preferred to tackle a few subjects in depth instead of attempting to cover a wider range of topics superficially. We are conscious of the extensive gaps in coverage: for example on the ecology of lichens, of fungal plant pathogens and of the complex interactions between fungi and animals. It is some justification that book-length treatments of these subjects are available elsewhere.




Physiological and Biotechnological Aspects of Extremophiles


Book Description

Physiological and Biotechnological Aspects of Extremophiles highlights the current and topical areas of research in this rapidly growing field. Expert authors from around the world provide the latest insights into the mechanisms of these fascinating organisms use to survive.The vast majority of extremophiles are microbes which include archaea, bacteria and some eukaryotes. These microbes live under chemical and physical extremes that are usually lethal to cellular molecules, yet they manage to survive and even thrive. Extremophiles have important practical uses. They are a valuable source of industrially important enzymes and recent research has revealed novel mechanisms and biomolecular structures with a broad range of potential applications in biotechnology, biomining, and bioremediation.Aimed at research scientists, students, microbiologists, and biotechnologists, this book is an essential reading for scientists working with extremophiles and a recommended reference text for anyone interested in the microbiology, bioprospecting, biomining, biofuels, and extremozymes of these organisms. - Shows the implications of the physiological adaptations of microbes from extreme habitats that are largely contributed by their biomolecules from basic to applied research - Provides in-depth knowledge of genomic plasticity and proteome of different extremophiles - Gives detailed and comprehensive insight about use of genetic engineering as well as genome editing for industrial applications




Thermophilic Bacteria


Book Description

Thermophilic Bacteria is a comprehensive volume that describes all major bacterial groups that can grow above 60-65°C (excluding the Archaea). Over 60 different species of aerobic and anaerobic thermophilic bacteria are covered. Isolation, growth methods, characterization and identification, ecology, metabolism, and enzymology of thermophilic bacteria are examined in detail, and an extensive compilation of recent biotechnological applications and the properties of many thermostable enzymes are also included. Major topics discussed in the book include a general review on thermophilic bacteria and archaea; heterotropic bacilli; the genus Thermus; new and rare genera of aerobic heterophophs, such as Saccharococcus, Rhodothermus, and Scotohermus; aerobic chemolithoautotrophic thermophilic bacteria; obligately anaerobic thermophilic bacteria; and hyperthermophilic Thermotogales and thermophilic phototrophs. Extensive bibliographies are also provided for each chapter. The vast amount of information packed into this one volume makes it essential for all microbiologists, biochemists, molecular biologists, and students interested in the expanding field of thermophilicity. Biotechnologists will find the book useful as a source of information on thermophiles or thermostable enzymes of possible industrial use.




Thermophilic Moulds in Biotechnology


Book Description

All important aspects of thermophilic moulds such as systematics, ecology, physiology and biochemistry, production of extracellular and intracellular enzymes, their role in spoilage of stores products and solid and liquid waste management, and general and molecular genetics have been dealt with comprehensively by experts in this book which covers progress in the field over the last 30 years since the seminal book Thermophilic Fungi published by Cooney and Emerson in 1964. The experts have reviewed extensive literature on all aspects of thermophilic moulds in a very comprehensive manner. This book will be useful for graduates as well as post-graduate students of life sciences, mycology, microbiology and biotechnology, and as a reference book for researchers.




Biodiversity of Fungi


Book Description

Biodiversity of Fungi is essential for anyone collecting and/or monitoring any fungi. Fascinating and beautiful, fungi are vital components of nearly all ecosystems and impact human health and our economy in a myriad of ways. Standardized methods for documenting diversity and distribution have been lacking. A wealth of information, especially regrading sampling protocols, compiled by an international team of fungal biologists, make Biodiversity of Fungi an incredible and fundamental resource for the study of organismal biodiversity. Chapters cover everything from what is a fungus, to maintaining and organizing a permanent study collection with associated databases; from protocols for sampling slime molds to insect associated fungi; from fungi growing on and in animals and plants to mushrooms and truffles. The chapters are arranged both ecologically and by sampling method rather than by taxonomic group for ease of use. The information presented here is intended for everyone interested in fungi, anyone who needs tools to study them in nature including naturalists, land managers, ecologists, mycologists, and even citizen scientists and sophiscated amateurs. - Covers all groups of fungi - from molds to mushrooms, even slime molds - Describes sampling protocols for many groups of fungi - Arranged by sampling method and ecology to coincide with users needs - Beautifully illustrated to document the range of fungi treated and techniques discussed - Natural history data are provided for each group of fungi to enable users to modify suggested protocols to meet their needs




Fungi


Book Description

Today’s accelerated pace of research, aided by new instruments and techniques that combine the approaches of genetics, biochemistry, and cell biology, has changed the character of mycology. A new approach is necessary for the organization and study of fungi. Fungi: Experimental Methods in Biology presents the latest information in fungal biology generated through the application of genetics, molecular biology, and biochemistry. This book analyzes information derived through real experiments, and focuses on unresolved questions in the field. Divided into six sections comprising 14 chapters, the text describes the special features of fungi, interactions of fungi with other organisms, model fungi in research, gene manipulation, adaptations, and natural populations. Each chapter is self-contained and written in a style that enables the reader to progress from elementary concepts to advanced research, benefiting both beginning research workers and experienced professionals. A comprehensive appendix covers the principles in naming fungi and discusses their broad classification.




Laboratory Protocols in Fungal Biology


Book Description

Laboratory Protocols in Fungal Biology presents the latest techniques in fungal biology. This book analyzes information derived through real experiments, and focuses on cutting edge techniques in the field. The book comprises 57 chapters contributed from internationally recognised scientists and researchers. Experts in the field have provided up-to-date protocols covering a range of frequently used methods in fungal biology. Almost all important methods available in the area of fungal biology viz. taxonomic keys in fungi; histopathological and microscopy techniques; proteomics methods; genomics methods; industrial applications and related techniques; and bioinformatics tools in fungi are covered and complied in one book. Chapters include introductions to their respective topics, list of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting. Each chapter is self-contained and written in a style that enables the reader to progress from elementary concepts to advanced research techniques. Laboratory Protocols in Fungal Biology is a valuable tool for both beginner research workers and experienced professionals. Coming Soon in the Fungal Biology series: Goyal, Manoharachary / Future Challenges in Crop Protection Against Fungal Pathogens Martín, García-Estrada, Zeilinger / Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites Zeilinger, Martín, García-Estrada / Biosynthesis and Molecular Genetics of Fungal Secondary Metabolites, Volume 2 van den Berg, Maruthachalam / Genetic Transformation Systems in Fungi Schmoll, Dattenbock / Gene Expression Systems in Fungi Dahms / Advanced Microscopy in Mycology