Thermoplastics and Thermoplastic Composites


Book Description

This book bridges the technology and business aspects of thermoplastics, providing a guide designed for engineers working in real-world industrial settings. The author explores the criteria for material selection, provides a detailed guide to each family of thermoplastics, and also explains the various processing options for each material type. More than 30 families of thermoplastics are described with information on their advantages and drawbacks, special grades, prices, transformation processes, applications, thermal behaviour, technological properties (tenacity, friction, dimensional stability), durability (ageing, creep, fatigue), chemical and fire behaviour, electrical properties, and joining possibilities. Biron explores the technological properties and economics of the major thermoplastics and reinforced thermoplastics, such as polyethylene, and emerging polymers such as polybenzimidazole, Thermoplastic Elastomers (TPEs) and bioplastics. In the second edition, a new section 'plastics solutions for practical problems' provides over 25 case studies illustrating a wide range of design and production challenges across the spectrum of thermoplastics, from metal and glass replacement solutions, to fire retardant plastics and antimicrobials. In addition, Biron provides major new material on bioplastics and wood plastic composites (WPCs), and fully updated data throughout. Combining materials data, information on processing techniques, and economic aspects (pricing), Biron provides a unique end-to-end approach to the selection and use of materials in the plastics industry and related sectors Includes a new section of case studies, illustrating best practice across a wide range of applications and industry sectors New material on bioplastics and sustainable composites




Thermoplastic Materials


Book Description

Practical and affordable, thermoplastics account for more than 90 percent of all plastic materials manufactured. That so many varieties are now available, speaks to the idea that while there is no one perfect material, it is possible to find a material that fits for every application. However, selecting that right material is no small challenge. Answering the needs of manufacturers and product developers, Thermoplastic Materials: Properties, Manufacturing Methods, and Applications provides all the information required to confidently select the right thermoplastic for any application. Based on a course taught to engineering students, the book starts with an overview of the plastics industry, looking at the major companies involved and how their products influence society. It then discusses various topics essential to the understanding and manufacturing of thermoplastics before getting to the core of the book, more than 400 pages of consistently formatted entries, organized according to 19 thermoplastics families and groupings. Each chapter covers raw materials, manufacturing methods, properties, costs, and applications. Among many topics related to thermoplastic resins, this seminal work: Provides micro and quasi-macro perspectives on their behavior Evaluates major manufacturing methods Discusses crystallinity and permeability Elaborates on the properties that make them useful barrier and packaging materials Written by Christopher Ibeh, professor of plastics engineering technology and director of the Center for Nanocomposites and Multifunctional Materials at Pittsburg State University, this book goes beyond current practices to look at emerging materials, including nanocomposites, and discusses sustainability as it relates to plastics. It also includes a chapter on functionalized thermoplastics, written by Andrey Beyle.




Handbook of Thermoplastic Elastomers


Book Description

Handbook of Thermoplastic Elastomers, Second Edition presents a comprehensive working knowledge of thermoplastic elastomers (TPEs), providing an essential introduction for those learning the basics, but also detailed engineering data and best practice guidance for those already involved in polymerization, processing, and part manufacture. TPEs use short, cost-effective production cycles, with reduced energy consumption compared to other polymers, and are used in a range of industries including automotive, medical, construction and many more. This handbook provides all the practical information engineers need to successfully utilize this material group in their products, as well as the required knowledge to thoroughly ground themselves in the fundamental chemistry of TPEs. The data tables included in this book assist engineers and scientists in both selecting and processing the materials for a given product or application. In the second edition of this handbook, all chapters have been reviewed and updated. New polymers and applications have been added — particularly in the growing automotive and medical fields — and changes in chemistry and processing technology are covered. - Provides essential knowledge of the chemistry, processing, properties, and applications for both new and established technical professionals in any industry utilizing TPEs - Datasheets provide "at-a-glance" processing and technical information for a wide range of commercial TPEs and compounds, saving readers the need to contact suppliers - Includes data on additional materials and applications, particularly in automotive and medical industries




Material Selection for Thermoplastic Parts


Book Description

As new applications are developed and plastics replace traditional materials in a widening spectrum of existing applications, the potential personal injury, property damage, financial and legal consequences of failure can be high. However, nearly half of plastics failure can be traced back to the original specification and selection of the material. This book gives engineers the data they need to make an informed decision about the materials they use in their products, imparting a thorough knowledge of the advantages and disadvantages of the various materials to choose from. The data also suggests other candidate materials which the reader may not have originally considered. More than 30,000 thermoplastics grades are grouped into circa. 300 subfamilies, within which over 20 properties are assessed. The abundance or scarcity of a material and its cost are also often important deciding factors. In this book, an economical overview of the plastics industry helps clarify the actual consumption and costs of thermoplastics including bioplastic, and the relationship of cost vs. performance is also examined for each thermoplastic subfamily. Immediate and long-term common properties are reviewed, including mechanical behavior, impact, thermal properties, and many more. Environmental considerations are also covered, including ease of recycling and sustainability. - Helps engineers to implement a systematic approach to material selection in their work - Includes more than 300 subfamilies of thermoplastic, and a wide range of properties including chemical resistance, thermal degradation, creep and UV resistance - Evaluates cost/performance relations and environmental considerations




Thermoplastic Material Selection


Book Description

Thermoplastic Material Selection: A Practical Guide presents current information on how proper material selection is a critical component of any manufactured product. The text is a practical guide to a difficult process, giving the reader a fundamental grounding in thermoplastic materials and providing the tools they need to save time, money, and frustration. The book provides an overview of the most commonly used thermoplastic materials, including discussions of the different chemical families, plastics categories, and material grades - and the implications of these differences on the material selection process. It provides fresh insights on the traditional methods of material selection based on performance and cost, and also discusses the use of non-traditional methods based on subjective evaluation. Subsequent sections include references on tools that can be used to conduct further exploration, how to accurately select the most suitable material, writing an effective material specification, and working with material suppliers and distributors. - Presents current information on how proper thermoplastics material selection is a critical component of any manufactured product - A practical guide to a difficult process, giving the reader a fundamental grounding in thermoplastics material selection and providing the tools they need to save time, money, and frustration - Delivers insights on the traditional methods of material selection based on performance and cost, and introduces nontraditional methods based on size, form, appearance, and feel




Thermoplastic Elastomers


Book Description

The nature and general properties of TPE's are explained, and the classes of materials considered in turn include styrenic block copolymers, polyether-esters, polyamides, polyurethanes, polyolefins and other miscellaneous systems. Developments in specific market sectors are also outlined. The review is supported by an extensive References and Abstracts section, containing over 400 abstracts, which provide a great deal more information on these useful materials.




Handbook of Thermoplastic Piping System Design


Book Description

Offers coverage of design, engineering, chemical resistance, costs, standards, codes and specifications. The text provides a resistance guide that lists over 800 chemicals and nearly 400 trade names cross-referenced to formal chemical names, covering all known chemical resistance data for the most popular thermoplastic piping systems. The book cove




Thermoplastics and Thermoplastic Composites


Book Description

Thermoplastics represent appx 90% by weight of all plastics consumed world-wide. We know them mainly in the form of polythenes, polyolefins, polystyrenes, nylons and acrylics. Under different heating conditions and by varying the composition of the plastic it is possible to make many different products with differing properties.This is a decision-making tool and source-book of information for plastics users, providing detailed accounts of the materials used, their economics,the selection of appropriate materials, and the use of thermoplastic resins and their composites. By having this book to hand, you will use the right material in the right way to produce the right product.·Provides a quick and pragmatic approach to selecting thermoplastics for the non-specialist plastics user·Offers detailed accounts of thermoplastics including economic and technological elements·Clear and easy to understand illustrated with figures, tables and graphs throughout




High Performance Thermoplastic Resins and Their Composites


Book Description

Recent developments in high performance thermoplastic resins and their composites are described in this book, and the benefits and limitations of these emerging materials are assessed for aerospace and other applications. Discussions on the performance of neat and continuous fiber reinforced thermoplastic resins in terms of their properties and environmental and chemical resistance are provided.




Handbook of Thermoplastics


Book Description

This new edition of the bestselling Handbook of Thermoplastics incorporates recent developments and advances in thermoplastics with regard to materials development, processing, properties, and applications. With contributions from 65 internationally recognized authorities in the field, the second edition features new and updated discussions of seve