Thin Films On Silicon: Electronic And Photonic Applications


Book Description

This volume provides a broad overview of the fundamental materials science of thin films that use silicon as an active substrate or passive template, with an emphasis on opportunities and challenges for practical applications in electronics and photonics. It covers three materials classes on silicon: Semiconductors such as undoped and doped Si and SiGe, SiC, GaN, and III-V arsenides and phosphides; dielectrics including silicon nitride and high-k, low-k, and electro-optically active oxides; and metals, in particular silicide alloys. The impact of film growth and integration on physical, electrical, and optical properties, and ultimately device performance, is highlighted.













Thin Films on Silicon


Book Description

A thin film is a layer of material ranging from fractions of a nanometer (monolayer) to several micrometers in thickness. Silicon (Si) is one of the most important semiconductors today because it has a very low occurrence of defects. While it's the building block of most electronic devices, other semiconductors are becoming more important in the industry because of their superior properties. The search for organic semiconductors as well as hybrid materials which combine organic and inorganic materials is underway. Scientists are searching for the materials most capable of absorbing light over a wide range of solar wavelengths and with the lowest manufacturing cost. This book explores the recent advances and remaining challenges in thin-film silicon.







Thin Films on Silicon


Book Description

"This volume provides a broad overview of the fundamental materials science of thin films that use silicon as an active substrate or passive template, with an emphasis on opportunities and challenges for practical applications in electronics and photonics. It covers three materials classes on silicon: Semiconductors such as undoped and doped Si and SiGe, SiC, GaN, and III-V arsenides and phosphides; dielectrics including silicon nitride and high-k, low-k, and electro-optically active oxides; and metals, in particular silicide alloys. The impact of film growth and integration on physical, electrical, and optical properties, and ultimately device performance, is highlighted."--Publisher's website.