Metallic Films for Electronic, Optical and Magnetic Applications


Book Description

Metallic films play an important role in modern technologies such as integrated circuits, information storage, displays, sensors, and coatings. Metallic Films for Electronic, Optical and Magnetic Applications reviews the structure, processing and properties of metallic films. Part one explores the structure of metallic films using characterization methods such as x-ray diffraction and transmission electron microscopy. This part also encompasses the processing of metallic films, including structure formation during deposition and post-deposition reactions and phase transformations. Chapters in part two focus on the properties of metallic films, including mechanical, electrical, magnetic, optical, and thermal properties. Metallic Films for Electronic, Optical and Magnetic Applications is a technical resource for electronics components manufacturers, scientists, and engineers working in the semiconductor industry, product developers of sensors, displays, and other optoelectronic devices, and academics working in the field. - Explores the structure of metallic films using characterization methods such as x-ray diffraction and transmission electron microscopy - Discusses processing of metallic films, including structure formation during deposition and post-deposition reactions and phase transformations - Focuses on the properties of metallic films, including mechanical, electrical, magnetic, optical, and thermal properties




Thin Films--stresses and Mechanical Properties X


Book Description

This work contains experimental, theoretical, and modeling research papers from a December 2003 symposium on the mechanical behavior of thin films, touching on topics in stress evolution, modeling stresses and film instability, deformation and adhesion, film fracture and fatigue, processing and structure, indentation testing, mechanical properties, properties and performance, and multilayers and nanolaminates. Some specific topics include fracture patterns in thin films and multilayers, thin film herringbone buckling patterns, the effect of oxygen on adhesion of thin copper films to silicon nitride, and the effects of stress amplitude on the fatigue of polysilicon. Annotation : 2004 Book News, Inc., Portland, OR (booknews.com)







Diffusion Processes in Advanced Technological Materials


Book Description

This new game book for understanding atoms at play aims to document diffusion processes and various other properties operative in advanced technological materials. Diffusion in functional organic chemicals, polymers, granular materials, complex oxides, metallic glasses, and quasi-crystals among other advanced materials is a highly interactive and synergic phenomenon. A large variety of atomic arrangements are possible. Each arrangement affects the performance of these advanced, polycrystalline multiphase materials used in photonics, MEMS, electronics, and other applications of current and developing interest. This book is written by pioneers in industry and academia for engineers, chemists, and physicists in industry and academia at the forefront of today's challenges in nanotechnology, surface science, materials science, and semiconductors.




Thin Films Stresses and Mechanical Properties VI


Book Description

Interest in the mechanical properties of thin films remains high throughout the world, as evidenced by the large international contingent represented in this book. With regard to stresses, techniques for sorting out residual stress and strain states are becoming more varied and sophisticated. Discussions include Raman scattering, nonlinear acoustic responses and back-scattered electron imaging microscopies, as well as the more standard wafer-bending and X-ray techniques. Spectroscopy, indenting and the burgeoning field of nanoprobe imaging for the characterization of mechanical properties of thin films are also highlighted. Topics include: mechanical properties of films and multilayers; fracture and adhesion; nanoindentation of films and surfaces; mechanical property methods and modelling; tribological properties of thin films; properties of polymer films; stress effects in thin films and interconnects; epitaxy and strain relief mechanisms, measurements.










Thin Film Materials


Book Description

Thin film mechanical behavior and stress presents a technological challenge for materials scientists, physicists and engineers. This book provides a comprehensive coverage of the major issues and topics dealing with stress, defect formation, surface evolution and allied effects in thin film materials. Physical phenomena are examined from the continuum down to the sub-microscopic length scales, with the connections between the structure of the material and its behavior described. Theoretical concepts are underpinned by discussions on experimental methodology and observations. Fundamental scientific concepts are embedded through sample calculations, a broad range of case studies with practical applications, thorough referencing, and end of chapter problems. With solutions to problems available on-line, this book will be essential for graduate courses on thin films and the classic reference for researchers in the field.




Polymer Thin Films


Book Description

Ch. 1. Block copolymer thin films / J.-Y. Wang, S. Park and T. P. Russell -- ch. 2. Equilibration of block copolymer films on chemically patterned surfaces / G. S. W. Craig, H. Kang and P. F. Nealey -- ch. 3. Structure formation and evolution in confined cylinder-forming block copolymers / G. J. A. Sevink and J. G. E. M. Fraaije -- ch. 4. Block copolymer lithography for magnetic device fabrication / J. Y. Cheng and C. A. Ross -- ch. 5. Hierarchical structuring of polymer nanoparticles by self-organization / M. Shimomura ... [et al.] -- ch. 6. Wrinkling polymers for surface structure control and functionality / E. P. Chan and A. J. Crosby -- ch. 7. Crystallization in polymer thin films: morphology and growth / R. M. Van Horn and S. Z. D. Cheng -- ch. 8. Friction at soft polymer surface / M. K. Chaudhury, K. Vorvolakos and D. Malotky -- ch. 9. Relationship between molecular architecture, large-strain mechanical response and adhesive performance of model, block copolymer-based pressure sensitive adhesives / C. Creton and K. R. Shull -- ch. 10. Stability and dewetting of thin liquid films / K. Jacobs, R. Seemann and S. Herminghaus -- ch. 11. Anomalous dynamics of polymer Films / O. K. C. Tsui.




Surface Properties And Engineering Of Complex Intermetallics


Book Description

This book is the third in a series of 4 books issued yearly as a deliverable of the research school established within the European Network of Excellence CMA (for Complex Metallic Alloys). It is written by reputed experts in the fields of surface physics and chemistry, metallurgy and process engineering, combining expertise found inside as well as outside the network.The CMA network focuses on the huge group of largely unknown multinary alloys and compounds formed with crystal structures based on giant unit cells containing clusters, with many tens or up to more than thousand atoms per unit cell. In these phases, for many phenomena, the physical length scales are substantially smaller than the unit-cell dimension. Hence, these materials offer unique combinations of properties, which are mutually excluded in conventional materials: metallic electric conductivity combined with low thermal conductivity, combination of good light absorption with high-temperature stability, combination of high metallic hardness with reduced wetting by liquids, electrical and thermal resistance tuneable by composition variation, excellent resistance to corrosion, reduced cold-welding and adhesion, enhanced hydrogen storage capacity and light absorption, etc.The series of books will concentrate on: development of fundamental knowledge with the aim of understanding materials phenomena, technologies associated with the production, transformation and processing of knowledge-based multifunctional materials, surface engineering, support for new materials development and new knowledge-based higher performance materials for macro-scale applications.