Thinking About Equations


Book Description

An accessible guide to developing intuition and skills for solving mathematical problems in the physical sciences and engineering Equations play a central role in problem solving across various fields of study. Understanding what an equation means is an essential step toward forming an effective strategy to solve it, and it also lays the foundation for a more successful and fulfilling work experience. Thinking About Equations provides an accessible guide to developing an intuitive understanding of mathematical methods and, at the same time, presents a number of practical mathematical tools for successfully solving problems that arise in engineering and the physical sciences. Equations form the basis for nearly all numerical solutions, and the authors illustrate how a firm understanding of problem solving can lead to improved strategies for computational approaches. Eight succinct chapters provide thorough topical coverage, including: Approximation and estimation Isolating important variables Generalization and special cases Dimensional analysis and scaling Pictorial methods and graphical solutions Symmetry to simplify equations Each chapter contains a general discussion that is integrated with worked-out problems from various fields of study, including physics, engineering, applied mathematics, and physical chemistry. These examples illustrate the mathematical concepts and techniques that are frequently encountered when solving problems. To accelerate learning, the worked example problems are grouped by the equation-related concepts that they illustrate as opposed to subfields within science and mathematics, as in conventional treatments. In addition, each problem is accompanied by a comprehensive solution, explanation, and commentary, and numerous exercises at the end of each chapter provide an opportunity to test comprehension. Requiring only a working knowledge of basic calculus and introductory physics, Thinking About Equations is an excellent supplement for courses in engineering and the physical sciences at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers, practitioners, and educators in all branches of engineering, physics, chemistry, biophysics, and other related fields who encounter mathematical problems in their day-to-day work.




The Ten Equations That Rule the World


Book Description

Is there a secret formula for getting rich? For going viral? For deciding how long to stick with your current job, Netflix series, or even relationship? This book is all about the equations that make our world go round. Ten of them, in fact. They are integral to everything from investment banking to betting companies and social media giants. And they can help you to increase your chance of success, guard against financial loss, live more healthfully, and see through scaremongering. They are known by only the privileged few - until now. With wit and clarity, mathematician David Sumpter shows that it isn't the technical details that make these formulas so successful. It is the way they allow mathematicians to view problems from a different angle - a way of seeing the world that anyone can learn. Empowering and illuminating, The Ten Equations shows how math really can change your life.




Open Middle Math


Book Description

This book is an amazing resource for teachers who are struggling to help students develop both procedural fluency and conceptual understanding.. --Dr. Margaret (Peg) Smith, co-author of5 Practices for Orchestrating Productive Mathematical Discussions Robert Kaplinsky, the co-creator of Open Middle math problems, brings hisnew class of tasks designed to stimulate deeper thinking and lively discussion among middle and high school students in Open Middle Math: Problems That Unlock Student Thinking, Grades 6-12. The problems are characterized by a closed beginning,- meaning all students start with the same initial problem, and a closed end,- meaning there is only one correct or optimal answer. The key is that the middle is open- in the sense that there are multiple ways to approach and ultimately solve the problem. These tasks have proven enormously popular with teachers looking to assess and deepen student understanding, build student stamina, and energize their classrooms. Professional Learning Resource for Teachers: Open Middle Math is an indispensable resource for educators interested in teaching student-centered mathematics in middle and high schools consistent with the national and state standards. Sample Problems at Each Grade: The book demonstrates the Open Middle concept with sample problems ranging from dividing fractions at 6th grade to algebra, trigonometry, and calculus. Teaching Tips for Student-Centered Math Classrooms: Kaplinsky shares guidance on choosing problems, designing your own math problems, and teaching for multiple purposes, including formative assessment, identifying misconceptions, procedural fluency, and conceptual understanding. Adaptable and Accessible Math: The tasks can be solved using various strategies at different levels of sophistication, which means all students can access the problems and participate in the conversation. Open Middle Math will help math teachers transform the 6th -12th grade classroom into an environment focused on problem solving, student dialogue, and critical thinking.




Building Thinking Classrooms in Mathematics, Grades K-12


Book Description

A thinking student is an engaged student Teachers often find it difficult to implement lessons that help students go beyond rote memorization and repetitive calculations. In fact, institutional norms and habits that permeate all classrooms can actually be enabling "non-thinking" student behavior. Sparked by observing teachers struggle to implement rich mathematics tasks to engage students in deep thinking, Peter Liljedahl has translated his 15 years of research into this practical guide on how to move toward a thinking classroom. Building Thinking Classrooms in Mathematics, Grades K–12 helps teachers implement 14 optimal practices for thinking that create an ideal setting for deep mathematics learning to occur. This guide Provides the what, why, and how of each practice and answers teachers’ most frequently asked questions Includes firsthand accounts of how these practices foster thinking through teacher and student interviews and student work samples Offers a plethora of macro moves, micro moves, and rich tasks to get started Organizes the 14 practices into four toolkits that can be implemented in order and built on throughout the year When combined, these unique research-based practices create the optimal conditions for learner-centered, student-owned deep mathematical thinking and learning, and have the power to transform mathematics classrooms like never before.




How to Remember Equations and Formulae


Book Description

At last! The book that all maths and physics students have been waiting for - "How To Remember Equations And Formulae" “If you need to remember formulae of any length, for study or work, and you’d like your hand held while you master this skill effortlessly in a fun way, you should buy this book today.” Amanda Ollier, author of the Self Help Bible and The Mindset Shift Never forget an equation or formula ever again Save time in exams, get the results you really deserve Impress your tutors and potential employers Stand out against others in the job market Enhance your earning potential Perfect for anyone studying or teaching maths, physics, accountancy, economics, engineering or the sciences, from A levels right through to postgraduate. What the experts say... “This is an outstanding and comprehensive book that delivers on every promise! All memory strategies including mind mapping and the journey system are here for you to depend on and you’ll quickly realize this is your most treasured memory resource.” Pat Wyman, founder HowToLearn.com and author, Amazing Grades “I am delighted to recommend this book to students. Phil’s and James’ work is based on a sound application of the fundamental principles of memory training, namely the use of imagination, association, and location.” Dominic O’Brien, Eight times World Memory Champion, Author and Media Personality “Explains the techniques in a beautifully simple and eloquent manner.” David Thomas GMM. International speaker, Sunday Times No.1 bestselling author, media personality “What James Smith and Phil Chambers offer their readers here is a thoroughly researched and simple system, which combines mnemonics and mind mapping in a unique and interesting way. As well as covering just about every mathematical equation you can think of, James and Phil offer solutions for the English, Greek and Roman alphabets and all with a splash of humour and encouraging examples to get you started. I wish this has existed when I was at school, I will certainly be introducing this to my students and I am confident their results will improve as a direct result.” Amanda Ollier, author of The Self Help Bible and The Mindset Shift




Thinking about Ordinary Differential Equations


Book Description

Ordinary differential equations - the building blocks of mathematical modelling - are also key elements of disciplines as diverse as engineering and economics. While mastery of these equations is essential, adhering to any one method of solving them is not: this book stresses alternative examples and analyses by means of which the student can build an understanding of a number of approaches to finding solutions and understanding their behaviour. This book offers not only an applied perspective for the student learning to solve differential equations, but also the challenge to apply these analytical tools in the context of singular perturbations, which arises in many areas of application. An important resource for the advanced undergradute, this book would be equally useful for the beginning graduate student investigating further approaches to these essential equations.




How Not to Be Wrong


Book Description

A brilliant tour of mathematical thought and a guide to becoming a better thinker, How Not to Be Wrong shows that math is not just a long list of rules to be learned and carried out by rote. Math touches everything we do; It's what makes the world make sense. Using the mathematician's methods and hard-won insights-minus the jargon-professor and popular columnist Jordan Ellenberg guides general readers through his ideas with rigor and lively irreverence, infusing everything from election results to baseball to the existence of God and the psychology of slime molds with a heightened sense of clarity and wonder. Armed with the tools of mathematics, we can see the hidden structures beneath the messy and chaotic surface of our daily lives. How Not to Be Wrong shows us how--Publisher's description.




Street-Fighting Mathematics


Book Description

An antidote to mathematical rigor mortis, teaching how to guess answers without needing a proof or an exact calculation. In problem solving, as in street fighting, rules are for fools: do whatever works—don't just stand there! Yet we often fear an unjustified leap even though it may land us on a correct result. Traditional mathematics teaching is largely about solving exactly stated problems exactly, yet life often hands us partly defined problems needing only moderately accurate solutions. This engaging book is an antidote to the rigor mortis brought on by too much mathematical rigor, teaching us how to guess answers without needing a proof or an exact calculation. In Street-Fighting Mathematics, Sanjoy Mahajan builds, sharpens, and demonstrates tools for educated guessing and down-and-dirty, opportunistic problem solving across diverse fields of knowledge—from mathematics to management. Mahajan describes six tools: dimensional analysis, easy cases, lumping, picture proofs, successive approximation, and reasoning by analogy. Illustrating each tool with numerous examples, he carefully separates the tool—the general principle—from the particular application so that the reader can most easily grasp the tool itself to use on problems of particular interest. Street-Fighting Mathematics grew out of a short course taught by the author at MIT for students ranging from first-year undergraduates to graduate students ready for careers in physics, mathematics, management, electrical engineering, computer science, and biology. They benefited from an approach that avoided rigor and taught them how to use mathematics to solve real problems. Street-Fighting Mathematics will appear in print and online under a Creative Commons Noncommercial Share Alike license.




All the Mathematics You Missed


Book Description




Thinking In Numbers


Book Description

The irresistibly engaging book that "enlarges one's wonder at Tammet's mind and his all-embracing vision of the world as grounded in numbers" (Oliver Sacks, MD). Thinking in Numbers is the book that Daniel Tammet, mathematical savant and bestselling author, was born to write. In Tammet's world, numbers are beautiful and mathematics illuminates our lives and minds. Using anecdotes, everyday examples, and ruminations on history, literature, and more, Tammet allows us to share his unique insights and delight in the way numbers, fractions, and equations underpin all our lives. Inspired variously by the complexity of snowflakes, Anne Boleyn's eleven fingers, and his many siblings, Tammet explores questions such as why time seems to speed up as we age, whether there is such a thing as an average person, and how we can make sense of those we love. His provocative and inspiring new book will change the way you think about math and fire your imagination to view the world with fresh eyes.