Contemporary Nonlinear Optics


Book Description

This book provides an up-to-date account of current trends in nonlinear optics. It is intended for researchers already engaged in the field of nonlinear optics. It may also be used by graduate students due to its comprehensive coverage and pedagogical presentation.




Nonlinear Optical Effects and Materials


Book Description

Describing progress achieved in the field of nonlinear optics and nonlinear optical materials, the Handbook treats selected topics such as photorefractive materials, third-order nonlinear optical materials and organic nonlinear optical crystals, as well as electro-optic polymers. Applications of photorefractive materials in optical memories, optical processing, and guided-wave nonlinear optics in hotorefractive waveguides are described. As light will play a more and more dominant role as an information carrier, the review of existing and new materials given here makes this a keystone book in the field.




Principles and Applications of Nonlinear Optical Materials


Book Description

Nonlinear optics is a topic of much current interest that exhibits a great diversity. Some publications on the subject are clearly physics, while others reveal an engineering bias; some appear to be accessible to the chemist, while others may appeal to biological understanding. Yet all purport to be non linear optics so where is the underlying unity? The answer is that the unity lies in the phenomena and the devices that exploit them, while the diversity lies in the materials used to express the phenomena. This book is an attempt to show this unity in diversity by bringing together contributions covering an unusually wide range of materials, preceded by accounts of the main phenomena and important devices. Because ofthe diversity, individual materials are treated in separate chapters by different expert authors, while as editors we have shouldered the task of providing the unifying initial chapters. Most main classes of nonlinear optical solids are treated: semiconductors, glasses, ferroelectrics, molecular crystals, polymers, and Langmuir-Blodgett films. (However, liquid crystals are not covered. ) Each class of material is enough for a monograph in itself, and this book is designed to be an introduction suitable for graduate students and those in industry entering the area of nonlinear optics. It is also suitable in parts for final-year undergraduates on project work. It aims to provide a bridge between traditional fields of expertise and the broader field of nonlinear optics.




Nonlinear Optical Materials


Book Description

Mathematical methods play a significant role in the rapidly growing field of nonlinear optical materials. This volume discusses a number of successful or promising contributions. The overall theme of this volume is twofold: (1) the challenges faced in computing and optimizing nonlinear optical material properties; and (2) the exploitation of these properties in important areas of application. These include the design of optical amplifiers and lasers, as well as novel optical switches. Research topics in this volume include how to exploit the magnetooptic effect, how to work with the nonlinear optical response of materials, how to predict laser-induced breakdown in efficient optical devices, and how to handle electron cloud distortion in femtosecond processes.




Organic Molecules for Nonlinear Optics and Photonics


Book Description

Photonics is being labelled by many as the technology for the 21st century. Because of the structural flexibility both at the molecular and bulk levels, organic materials are emerging as a very important class of nonlinear optical materials to be used for generating necessary nonlinear optical functions for the technology of photonics. Since the last NATO advanced research workshop on "Polymers for Nonlinear Optics"held in June 1988, at Nice - Sophia Antipolis, France. there has been a tremendous growth of interest worldwide and important development in this field. Significant progress has been made in theoretical modeling, material development, experimental studies and device concepts utilizing organic materials. These important recent developments provided the rationale for organizing the workshop on "Organic Materials for Nonlinear Optics and Photonics" which was held in La Rochelle, France, in August 1990. This proceeding is the outcome of the workshop held in La Rochelle. The objective of the workshop was to bring together scientists and engineers of varied backgrounds working in this field in order to assess the current status of this field by presenting significant recent developments and make recommendations on future directions of research. The workshop was multidisciplinary as it had contributions from chemists, physicists, materials scientists and device engineers. The participants were both from industries and universities. The workshop included plenary lectures by leading international scientists in this field, contributed research papers and a poster session. Panel discussion groups were organized to summarize important developments and to project future directions.




Non-Linear Optical Properties of Matter


Book Description

This book assembles both theory and application in this field, to interest experimentalists and theoreticians alike. Part 1 is concerned with the theory and computing of non-linear optical (NLO) properties while Part 2 reviews the latest developments in experimentation. This book will be invaluable to researchers and students in academia and industry, particularlrly to anyone involved in materials science, theoretical and computational chemistry, chemical physics, and molecular physics.




Handbook of Nonlinear Optics


Book Description

Examining classic theories, experimental methods, and practical formulas for exploration of the core topics in nonlinear optics, the second edition of this acclaimed text was extensively revised to reflect recent advances in the analysis and modification of material properties for application in frequency conversion, optical switching and limiting,




Nonlinear Optics of Organic Molecules and Polymers


Book Description

This book presents an excellent overview of the exciting new advances in nonlinear optical (NLO) materials and their applications in emerging photonics technologies. It is the first reference source available to cover every NLO material published through 1995! All theoretical approaches, measurement techniques, materials, technologies, and applications are covered. With more than 1,800 bibliographic citations, 324 figures, 218 tables, and 812 equations, this book is an invaluable reference source for graduate and undergraduate students, researchers, scientists and engineers working in academia and industries in chemistry, solid-state physics, materials science, optical and polymer engineering, and computational science.




Nonlinear Optics


Book Description

The Optical Society of America (OSA) and SPIE – The International Society for Optical Engineering have awarded Robert Boyd with an honorable mention for the Joseph W. Goodman Book Writing Award for his work on Nonlinear Optics, 2nd edition.Nonlinear optics is essentially the study of the interaction of strong laser light with matter. It lies at the basis of the field of photonics, the use of light fields to control other light fields and to perform logical operations. Some of the topics of this book include the fundamentals and applications of optical systems based on the nonlinear interaction of light with matter. Topics to be treated include: mechanisms of optical nonlinearity, second-harmonic and sum- and difference-frequency generation, photonics and optical logic, optical self-action effects including self-focusing and optical soliton formation, optical phase conjugation, stimulated Brillouin and stimulated Raman scattering, and selection criteria of nonlinear optical materials.· Covers all the latest topics and technology in this ever-evolving area of study that forms the backbone of the major applications of optical technology· Offers first-rate instructive style making it ideal for self-study· Emphasizes the fundamentals of non-linear optics rather than focus on particular applications that are constantly changing




The Elements of Nonlinear Optics


Book Description

There has recently been a rapid growth of activity in nonlinear optics. Effects such as frequency doubling, stimulated Raman scattering, phase conjugation and solitons are of great interest both for their fundamental properties and their many important applications in science and engineering. It is mainly these applications - especially in telecommunications and information processing - that have stimulated the recent surge of activity. This book is a self contained account of the most important principles of nonlinear optics. Assuming only a familiarity with basic mathematics, the fundamentals of nonlinear optics are fully developed from basic concepts. The essential quantum mechanical apparatus is introduced and explained. In later chapters the underlying ideas are illustrated by discussing particular experimental configurations and materials. This book will be an invaluable introduction to the field for beginning graduates in physics or engineering, and will provide an excellent overview and reference work for active researchers in the field.