Site Investigation using Resistivity Imaging


Book Description

Subsurface investigation is the most important phase of any civil engineering construction or development activities. The geologic conditions can be extremely complex, variable, and subject to change with time; soil test borings and in-situ tests are employed to obtain subsoil information. Resistivity Imaging (RI) is a non-destructive, fast and cost-effective method of site investigation and soil characterization. Site Investigation using Resistivity Imaging aims to summarize pertinent details of RI in site investigation for geotechnical and geo-environmental applications. It aims to bridge the gap that currently exists between the geotechnical/geo-environmental and geophysical engineering community. The geotechnical and geo-environmental engineers will be able to use annd understand geophysical data and utilize the information for their design. Features: First comprehensive handbook aimed at engineers that summarises pertinent details of Resitivity Imaging (RI) in site investigation for geotechnical and geo-environmental applications. for geotechnical and geoenvironmental engineers, making it possible to interpret geophysical data and utilize the information for their design. explanining the advantages of RI over conventional site investigations: continuous image, large coverage, low cost, quick and easy data processing. It will be a comprehensive handbook for the application of RI in geotechnical and geo-environmental site investigations.







Resistivity and Induced Polarization


Book Description

A comprehensive text on resistivity and induced polarization covering theory and practice for the near-surface Earth supported by modelling software.




Groundwater in Fractured Bedrock Environments: Managing Catchment and Subsurface Resources


Book Description

Fractured bedrock aquifers have traditionally been regarded as low-productivity aquifers, with only limited relevance to regional groundwater resources. It is now being increasingly recognised that these complex bedrock aquifers can play an important role in catchment management and subsurface energy systems. At shallow to intermediate depth, fractured bedrock aquifers help to sustain surface water baseflows and groundwater dependent ecosystems, provide local groundwater supplies and impact on contaminant transfers on a catchment scale. At greater depths, understanding the properties and groundwater flow regimes of these complex aquifers can be crucial for the successful installation of subsurface energy and storage systems, such as deep geothermal or Aquifer Thermal Energy Storage systems and natural gas or CO2 storage facilities as well as the exploration of natural resources such as conventional/unconventional oil and gas. In many scenarios, a robust understanding of fractured bedrock aquifers is required to assess the nature and extent of connectivity between such engineered subsurface systems at depth and overlying receptors in the shallow subsurface.




Treatise on Water Science


Book Description

Water quality and management are of great significance globally, as the demand for clean, potable water far exceeds the availability. Water science research brings together the natural and applied sciences, engineering, chemistry, law and policy, and economics, and the Treatise on Water Science seeks to unite these areas through contributions from a global team of author-experts. The 4-volume set examines topics in depth, with an emphasis on innovative research and technologies for those working in applied areas. Published in partnership with and endorsed by the International Water Association (IWA), demonstrating the authority of the content Editor-in-Chief Peter Wilderer, a Stockholm Water Prize recipient, has assembled a world-class team of volume editors and contributing authors Topics related to water resource management, water quality and supply, and handling of wastewater are treated in depth







Contaminants in the Subsurface


Book Description

At hundreds of thousands of commercial, industrial, and military sites across the country, subsurface materials including groundwater are contaminated with chemical waste. The last decade has seen growing interest in using aggressive source remediation technologies to remove contaminants from the subsurface, but there is limited understanding of (1) the effectiveness of these technologies and (2) the overall effect of mass removal on groundwater quality. This report reviews the suite of technologies available for source remediation and their ability to reach a variety of cleanup goals, from meeting regulatory standards for groundwater to reducing costs. The report proposes elements of a protocol for accomplishing source remediation that should enable project managers to decide whether and how to pursue source remediation at their sites.




Electromagnetic Methods in Applied Geophysics


Book Description

As a slag heap, the result of strip mining, creeps closer to his house in the Ohio hills, fifteen-year-old M. C. is torn between trying to get his family away and fighting for the home they love.