Aerodynamics of Turbines and Compressors. (HSA-1), Volume 1


Book Description

Volume X of the High Speed Aerodynamics and Jet Propulsion series. Contents include: Theory of Two-Dimensional Flow through Cascades; Three-Dimensional Flow in Turbomachines; Experimental Techniques; Flow in Cascades; The Axial Compressor Stage; The Supersonic Compressor; Aerodynamic Design of Axial Flow Turbines; The Radial Turbine; The Centrifugal Compressor; Intermittent Flow Effects. Originally published in 1964. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.




Worked Examples in Turbomachinery


Book Description

Worked Examples in Turbomachinery (Fluid Mechanics and Thermodynamics) is a publication designed to supplement the materials in Fluid Mechanics, Thermodynamics of Turbomachinery, Second Edition. The title provides detailed solution for the unanswered problems from the main textbook. The text first covers dimensional analysis, and then proceeds to tackling thermodynamics. Next, the selection discusses two-dimensional cascades. The text also talks about axial flow turbines and compressors, along with the three-dimensional flow in axial turbo machines. Chapter 7 covers centrifugal compressor and pumps, while Chapter 8 tackles radial flow turbines. The book will be of great use to students of mechanical engineering, particularly those who have access to the main textbook.



















Three Dimensional Flow and Temperature Profile Attenuation in an Axial Flow Turbine


Book Description

While strongly three dimensional and highly unsteady nature of the flow in axial turbines has, until recently, defied in-depth analysis, the benefits that can be realized from an improved capability to predict the aerodynamics and heat transfer in turbines are numerous. These benefits include improved performance through higher efficiency, higher thrust-to-weight ratio through higher turbine inlet temperature, and improved durability through more precise predictions of local heat load. This program was particularly interested in the aerodynamic mechanisms affecting attenuation of a radial temperature profile in the flow as it passed through the turbine. The radial temperature profile in the flow exiting a combustor and entering a turbine can range from compressor exit temperature (approx = 1100 F) near the hub and tip end walls to a maximum (as high as 3200 F) in the midspan region. The heat load at any location on the turbine airfoils or end walls depends strongly on the local gas temperature at that location; hence the mixing, or attenuation, of the inlet temperature profile is of critical importance. This program has advanced the state-of-the-art by providing: 1) an exhaustive aerodynamic data base for the three dimensional flow in a large scale axial turbine; 2) an exhaustive data base documenting the mixing of a simulated combustor exit temperature profile as it passed through the turbine; and 3) an assessment of sota three dimensional time accurate, Navier-Stokes prediction of the flow in the turbine stage. Keywords: Temperature redistribution. (EDC).