Three Pearls of Number Theory


Book Description

These 3 puzzles require proof of a basic law governing the world of numbers. Features van der Waerden's theorem, the Landau-Schnirelmann hypothesis and Mann's theorem, and a solution to Waring's problem. Solutions included.




Three Pearls of Number Theory


Book Description

"This little book is devoted to three theorems in arithmetic, which, in spite of their apparent simplicity, have been the objects of the efforts of many important mathematical scholars. The proofs which are presented here make use of completely elementary means, (although they are not very simple). The book can be understood by beginning college students, and is intended for wide circles of lovers of mathematics."--Foreword.




The Colorado Mathematical Olympiad: The Third Decade and Further Explorations


Book Description

Now in its third decade, the Colorado Mathematical Olympiad (CMO), founded by the author, has become an annual state-wide competition, hosting many hundreds of middle and high school contestants each year. This book presents a year-by-year history of the CMO from 2004–2013 with all the problems from the competitions and their solutions. Additionally, the book includes 10 further explorations, bridges from solved Olympiad problems to ‘real’ mathematics, bringing young readers to the forefront of various fields of mathematics. This book contains more than just problems, solutions, and event statistics — it tells a compelling story involving the lives of those who have been part of the Olympiad, their reminiscences of the past and successes of the present. I am almost speechless facing the ingenuity and inventiveness demonstrated in the problems proposed in the third decade of these Olympics. However, equally impressive is the drive and persistence of the originator and living soul of them. It is hard for me to imagine the enthusiasm and commitment needed to work singlehandedly on such an endeavor over several decades. —Branko Grünbaum, University of Washingtonp/ppiAfter decades of hunting for Olympiad problems, and struggling to create Olympiad problems, he has become an extraordinary connoisseur and creator of Olympiad problems. The Olympiad problems were very good, from the beginning, but in the third decade the problems have become extraordinarily good. Every brace of 5 problems is a work of art. The harder individual problems range in quality from brilliant to work-of-genius... The same goes for the “Further Explorations” part of the book. Great mathematics and mathematical questions are immersed in a sauce of fascinating anecdote and reminiscence. If you could have only one book to enjoy while stranded on a desert island, this would be a good choice. /ii/i/psup/supp/ppiLike Gauss, Alexander Soifer would not hesitate to inject Eureka! at the right moment. Like van der Waerden, he can transform a dispassionate exercise in logic into a compelling account of sudden insights and ultimate triumph./ii/i/pp— Cecil Rousseau Chair, USA Mathematical Olympiad Committee/ppiA delightful feature of the book is that in the second part more related problems are discussed. Some of them are still unsolved./ii/i/pp—Paul Erdős/ppiThe book is a gold mine of brilliant reasoning with special emphasis on the power and beauty of coloring proofs. Strongly recommended to both serious and recreational mathematicians on all levels of expertise./i/p —Martin Gardner




The World of Mathematics


Book Description

Presents 33 essays on such topics as statistics and the design of experiments, group theory, the mathematics of infinity, the mathematical way of thinking, the unreasonableness of mathematics, and mathematics as an art. A reprint of volume 3 of the four-volume edition originally published by Simon and Schuster in 1956. Annotation c. Book News, Inc., Portland, OR (booknews.com).




Information Theory


Book Description

Developed by Claude Shannon and Norbert Wiener in the late Forties, information theory, or statistical communication theory, deals with the theoretical underpinnings of a wide range of communication devices: radio, television, radar, computers, telegraphy, and more. This book is an excellent introduction to the mathematics underlying the theory. Designed for upper-level undergraduates and first-year graduate students, the book treats three major areas: analysis of channel models and proof of coding theorems (Chapters 3, 7 and 8); study of specific coding systems (Chapters 2, 4, and 5); and study of statistical properties of information sources (Chapter 6). Among the topics covered are noiseless coding, the discrete memoryless channel, error correcting codes, information sources, channels with memory and continuous channels. The author has tried to keep the prerequisites to a minimum. However, students should have a knowledge of basic probability theory. Some measure and Hilbert space theory is helpful as well for the last two sections of Chapter 8, which treat time-continuous channels. An appendix summarizes the Hilbert space background and the results from the theory of stochastic processes necessary for these sections. The appendix is not self-contained, but will serve to pinpoint some of the specific equipment needed for the analysis of time-continuous channels. In addition to historic notes at the end of each chapter indicating the origin of some of the results, the author has also included 60 problems, with detailed solutions, making the book especially valuable for independent study.




Ergodic Theory


Book Description

This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.




The Theory of Spinors


Book Description

The French mathematician Élie Cartan (1869–1951) was one of the founders of the modern theory of Lie groups, a subject of central importance in mathematics and also one with many applications. In this volume, he describes the orthogonal groups, either with real or complex parameters including reflections, and also the related groups with indefinite metrics. He develops the theory of spinors (he discovered the general mathematical form of spinors in 1913) systematically by giving a purely geometrical definition of these mathematical entities; this geometrical origin makes it very easy to introduce spinors into Riemannian geometry, and particularly to apply the idea of parallel transport to these geometrical entities. The book is divided into two parts. The first is devoted to generalities on the group of rotations in n-dimensional space and on the linear representations of groups, and to the theory of spinors in three-dimensional space. Finally, the linear representations of the group of rotations in that space (of particular importance to quantum mechanics) are also examined. The second part is devoted to the theory of spinors in spaces of any number of dimensions, and particularly in the space of special relativity (Minkowski space). While the basic orientation of the book as a whole is mathematical, physicists will be especially interested in the final chapters treating the applications of spinors in the rotation and Lorentz groups. In this connection, Cartan shows how to derive the "Dirac" equation for any group, and extends the equation to general relativity. One of the greatest mathematicians of the 20th century, Cartan made notable contributions in mathematical physics, differential geometry, and group theory. Although a profound theorist, he was able to explain difficult concepts with clarity and simplicity. In this detailed, explicit treatise, mathematicians specializing in quantum mechanics will find his lucid approach a great value.




Four Faultless Felons


Book Description

Four members of a London club relate their former careers in crime




First-Order Partial Differential Equations, Vol. 2


Book Description

Second volume of a highly regarded two-volume set, fully usable on its own, examines physical systems that can usefully be modeled by equations of the first order. Examples are drawn from a wide range of scientific and engineering disciplines. The book begins with a consideration of pairs of quasilinear hyperbolic equations of the first order and goes on to explore multicomponent chromatography, complications of counter-current moving-bed adsorbers, the adiabatic adsorption column, and chemical reaction in countercurrent reactors. Exercises appear at the end of most sections. Accessible to anyone with a thorough grounding in undergraduate mathematics — ideally including volume 1 of this set. 1989 edition. 198 black-and-white illustrations. Author and subject indices.




Fundamentals of Scientific Mathematics


Book Description

Offering undergraduates a solid mathematical background (and functioning equally well for independent study), this rewarding, beautifully illustrated text covers geometry and matrices, vector algebra, analytic geometry, functions, and differential and integral calculus. 1961 edition.