Three Regularity Results Related to the Navier-Stokes Equations
Author : Dapeng Du
Publisher :
Page : 140 pages
File Size : 49,57 MB
Release : 2005
Category :
ISBN :
Author : Dapeng Du
Publisher :
Page : 140 pages
File Size : 49,57 MB
Release : 2005
Category :
ISBN :
Author : James C. Robinson
Publisher : Cambridge University Press
Page : 487 pages
File Size : 48,65 MB
Release : 2016-09-07
Category : Mathematics
ISBN : 1107019664
An accessible treatment of the main results in the mathematical theory of the Navier-Stokes equations, primarily aimed at graduate students.
Author : Matthias Hieber
Publisher : Springer Nature
Page : 471 pages
File Size : 25,39 MB
Release : 2020-04-28
Category : Mathematics
ISBN : 3030362264
This book collects together a unique set of articles dedicated to several fundamental aspects of the Navier–Stokes equations. As is well known, understanding the mathematical properties of these equations, along with their physical interpretation, constitutes one of the most challenging questions of applied mathematics. Indeed, the Navier-Stokes equations feature among the Clay Mathematics Institute's seven Millennium Prize Problems (existence of global in time, regular solutions corresponding to initial data of unrestricted magnitude). The text comprises three extensive contributions covering the following topics: (1) Operator-Valued H∞-calculus, R-boundedness, Fourier multipliers and maximal Lp-regularity theory for a large, abstract class of quasi-linear evolution problems with applications to Navier–Stokes equations and other fluid model equations; (2) Classical existence, uniqueness and regularity theorems of solutions to the Navier–Stokes initial-value problem, along with space-time partial regularity and investigation of the smoothness of the Lagrangean flow map; and (3) A complete mathematical theory of R-boundedness and maximal regularity with applications to free boundary problems for the Navier–Stokes equations with and without surface tension. Offering a general mathematical framework that could be used to study fluid problems and, more generally, a wide class of abstract evolution equations, this volume is aimed at graduate students and researchers who want to become acquainted with fundamental problems related to the Navier–Stokes equations.
Author : Giovanni Galdi
Publisher : Springer Science & Business Media
Page : 1026 pages
File Size : 42,73 MB
Release : 2011-07-12
Category : Mathematics
ISBN : 0387096205
The book provides a comprehensive, detailed and self-contained treatment of the fundamental mathematical properties of boundary-value problems related to the Navier-Stokes equations. These properties include existence, uniqueness and regularity of solutions in bounded as well as unbounded domains. Whenever the domain is unbounded, the asymptotic behavior of solutions is also investigated. This book is the new edition of the original two volume book, under the same title, published in 1994. In this new edition, the two volumes have merged into one and two more chapters on steady generalized oseen flow in exterior domains and steady Navier–Stokes flow in three-dimensional exterior domains have been added. Most of the proofs given in the previous edition were also updated. An introductory first chapter describes all relevant questions treated in the book and lists and motivates a number of significant and still open questions. It is written in an expository style so as to be accessible also to non-specialists.Each chapter is preceded by a substantial, preliminary discussion of the problems treated, along with their motivation and the strategy used to solve them. Also, each chapter ends with a section dedicated to alternative approaches and procedures, as well as historical notes. The book contains more than 400 stimulating exercises, at different levels of difficulty, that will help the junior researcher and the graduate student to gradually become accustomed with the subject. Finally, the book is endowed with a vast bibliography that includes more than 500 items. Each item brings a reference to the section of the book where it is cited. The book will be useful to researchers and graduate students in mathematics in particular mathematical fluid mechanics and differential equations. Review of First Edition, First Volume: “The emphasis of this book is on an introduction to the mathematical theory of the stationary Navier-Stokes equations. It is written in the style of a textbook and is essentially self-contained. The problems are presented clearly and in an accessible manner. Every chapter begins with a good introductory discussion of the problems considered, and ends with interesting notes on different approaches developed in the literature. Further, stimulating exercises are proposed. (Mathematical Reviews, 1995)
Author : Hermann Sohr
Publisher : Springer Science & Business Media
Page : 376 pages
File Size : 29,4 MB
Release : 2012-12-13
Category : Mathematics
ISBN : 3034805519
The primary objective of this monograph is to develop an elementary and se- containedapproachtothemathematicaltheoryofaviscousincompressible?uid n in a domain ? of the Euclidean spaceR , described by the equations of Navier- Stokes. The book is mainly directed to students familiar with basic functional analytic tools in Hilbert and Banach spaces. However, for readers’ convenience, in the ?rst two chapters we collect, without proof some fundamental properties of Sobolev spaces, distributions, operators, etc. Another important objective is to formulate the theory for a completely general domain ?. In particular, the theory applies to arbitrary unbounded, non-smooth domains. For this reason, in the nonlinear case, we have to restrict ourselves to space dimensions n=2,3 that are also most signi?cant from the physical point of view. For mathematical generality, we will develop the l- earized theory for all n? 2. Although the functional-analytic approach developed here is, in principle, known to specialists, its systematic treatment is not available, and even the diverseaspectsavailablearespreadoutintheliterature.However,theliterature is very wide, and I did not even try to include a full list of related papers, also because this could be confusing for the student. In this regard, I would like to apologize for not quoting all the works that, directly or indirectly, have inspired this monograph.
Author : Charles R. Doering
Publisher : Cambridge University Press
Page : 236 pages
File Size : 27,29 MB
Release : 1995
Category : Mathematics
ISBN : 9780521445689
This introductory physical and mathematical presentation of the Navier-Stokes equations focuses on unresolved questions of the regularity of solutions in three spatial dimensions, and the relation of these issues to the physical phenomenon of turbulent fluid motion.
Author : Terence Tao
Publisher :
Page : 284 pages
File Size : 12,64 MB
Release : 2006
Category : Mathematical analysis
ISBN :
Providing an introduction to real analysis, this text is suitable for honours undergraduates. It starts at the very beginning - the construction of the number systems and set theory, then to the basics of analysis, through to power series, several variable calculus and Fourier analysis, and finally to the Lebesgue integral.
Author : Luigi C. Berselli
Publisher : Academic Press
Page : 330 pages
File Size : 30,24 MB
Release : 2021-03-10
Category : Technology & Engineering
ISBN : 0128219459
Three-Dimensional Navier-Stokes Equations for Turbulence provides a rigorous but still accessible account of research into local and global energy dissipation, with particular emphasis on turbulence modeling. The mathematical detail is combined with coverage of physical terms such as energy balance and turbulence to make sure the reader is always in touch with the physical context. All important recent advancements in the analysis of the equations, such as rigorous bounds on structure functions and energy transfer rates in weak solutions, are addressed, and connections are made to numerical methods with many practical applications. The book is written to make this subject accessible to a range of readers, carefully tackling interdisciplinary topics where the combination of theory, numerics, and modeling can be a challenge. - Includes a comprehensive survey of modern reduced-order models, including ones for data assimilation - Includes a self-contained coverage of mathematical analysis of fluid flows, which will act as an ideal introduction to the book for readers without mathematical backgrounds - Presents methods and techniques in a practical way so they can be rapidly applied to the reader's own work
Author : Alain Bensoussan
Publisher : Springer Science & Business Media
Page : 450 pages
File Size : 20,40 MB
Release : 2013-04-17
Category : Mathematics
ISBN : 3662129051
This book collects many helpful techniques for obtaining regularity results for solutions of nonlinear systems of partial differential equations. These are applied in various cases to provide useful examples and relevant results, particularly in such fields as fluid mechanics, solid mechanics, semiconductor theory and game theory.
Author : Grzegorz Łukaszewicz
Publisher : Springer
Page : 395 pages
File Size : 39,4 MB
Release : 2016-04-12
Category : Mathematics
ISBN : 331927760X
This volume is devoted to the study of the Navier–Stokes equations, providing a comprehensive reference for a range of applications: from advanced undergraduate students to engineers and professional mathematicians involved in research on fluid mechanics, dynamical systems, and mathematical modeling. Equipped with only a basic knowledge of calculus, functional analysis, and partial differential equations, the reader is introduced to the concept and applications of the Navier–Stokes equations through a series of fully self-contained chapters. Including lively illustrations that complement and elucidate the text, and a collection of exercises at the end of each chapter, this book is an indispensable, accessible, classroom-tested tool for teaching and understanding the Navier–Stokes equations. Incompressible Navier–Stokes equations describe the dynamic motion (flow) of incompressible fluid, the unknowns being the velocity and pressure as functions of location (space) and time variables. A solution to these equations predicts the behavior of the fluid, assuming knowledge of its initial and boundary states. These equations are one of the most important models of mathematical physics: although they have been a subject of vivid research for more than 150 years, there are still many open problems due to the nature of nonlinearity present in the equations. The nonlinear convective term present in the equations leads to phenomena such as eddy flows and turbulence. In particular, the question of solution regularity for three-dimensional problem was appointed by Clay Institute as one of the Millennium Problems, the key problems in modern mathematics. The problem remains challenging and fascinating for mathematicians, and the applications of the Navier–Stokes equations range from aerodynamics (drag and lift forces), to the design of watercraft and hydroelectric power plants, to medical applications such as modeling the flow of blood in the circulatory system.