Time and Navigation


Book Description

If you want to know where you are, you need a good clock. The surprising connection between time and placeais explored inaTime and Navigation- The Untold Story of Getting from Here to There, the companion book to the National Air and Space Museum exhibition of the same name. Today we use smartphones and GPS, but navigating has not always been so easy. The oldest "clock" is Earth itself, and the oldest means of keeping time came from observing changes in the sky. Early mariners like the Vikings accomplished amazing feats of navigation without using clocks at all. Pioneering seafarers in the Age of Exploration used dead reckoning and celestial navigation; later innovations such as sextants and marine chronometers honed these techniques by measuring latitude and longitude. When explorers turned their sights to the skies, they built on what had been learned at sea. For example, Charles Lindbergh used a bubble sextant on his record-breaking flights. World War II led to the development of new flight technologies, notably radio navigation, since celestial navigation was not suited for all-weather military operations. These forms of navigation were extended and enhanced when explorers began guiding spacecraft into space and across the solar system. Astronauts combined celestial navigation technology with radio transmissions. The development of the atomic clock revolutionized space flight because it could measure billionths of a second, thereby allowing mission teams to navigate more accurately. Scientists and engineers applied these technologies to navigation on earth to develop space-based time and navigation services such as GPS that is used every day by people from all walks of life. While the history of navigation is one of constant change and innovation, it is also one of remarkable continuity. Time and Navigation tells the story of navigation to help us understand where we have been and how we got there so that we can understand where we are going.




Longitude


Book Description

The dramatic human story of an epic scientific quest and of one man's forty-year obsession to find a solution to the thorniest scientific dilemma of the day--"the longitude problem." Anyone alive in the eighteenth century would have known that "the longitude problem" was the thorniest scientific dilemma of the day-and had been for centuries. Lacking the ability to measure their longitude, sailors throughout the great ages of exploration had been literally lost at sea as soon as they lost sight of land. Thousands of lives and the increasing fortunes of nations hung on a resolution. One man, John Harrison, in complete opposition to the scientific community, dared to imagine a mechanical solution-a clock that would keep precise time at sea, something no clock had ever been able to do on land. Longitude is the dramatic human story of an epic scientific quest and of Harrison's forty-year obsession with building his perfect timekeeper, known today as the chronometer. Full of heroism and chicanery, it is also a fascinating brief history of astronomy, navigation, and clockmaking, and opens a new window on our world.




The Natural Navigator


Book Description

From the New York Times-bestselling author of The Secret World of Weather and The Lost Art of Reading Nature’s Signs, learn to tap into nature and notice the hidden clues all around you Before GPS, before the compass, and even before cartography, humankind was navigating. Now this singular guide helps us rediscover what our ancestors long understood—that a windswept tree, the depth of a puddle, or a trill of birdsong can help us find our way, if we know what to look and listen for. Adventurer and navigation expert Tristan Gooley unlocks the directional clues hidden in the sun, moon, stars, clouds, weather patterns, lengthening shadows, changing tides, plant growth, and the habits of wildlife. Rich with navigational anecdotes collected across ages, continents, and cultures, The Natural Navigator will help keep you on course and open your eyes to the wonders, large and small, of the natural world.




Position, Navigation, and Timing Technologies in the 21st Century


Book Description

Covers the latest developments in PNT technologies, including integrated satellite navigation, sensor systems, and civil applications Featuring sixty-four chapters that are divided into six parts, this two-volume work provides comprehensive coverage of the state-of-the-art in satellite-based position, navigation, and timing (PNT) technologies and civilian applications. It also examines alternative navigation technologies based on other signals-of-opportunity and sensors and offers a comprehensive treatment on integrated PNT systems for consumer and commercial applications. Volume 1 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications contains three parts and focuses on the satellite navigation systems, technologies, and engineering and scientific applications. It starts with a historical perspective of GPS development and other related PNT development. Current global and regional navigation satellite systems (GNSS and RNSS), their inter-operability, signal quality monitoring, satellite orbit and time synchronization, and ground- and satellite-based augmentation systems are examined. Recent progresses in satellite navigation receiver technologies and challenges for operations in multipath-rich urban environment, in handling spoofing and interference, and in ensuring PNT integrity are addressed. A section on satellite navigation for engineering and scientific applications finishes off the volume. Volume 2 of Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications consists of three parts and addresses PNT using alternative signals and sensors and integrated PNT technologies for consumer and commercial applications. It looks at PNT using various radio signals-of-opportunity, atomic clock, optical, laser, magnetic field, celestial, MEMS and inertial sensors, as well as the concept of navigation from Low-Earth Orbiting (LEO) satellites. GNSS-INS integration, neuroscience of navigation, and animal navigation are also covered. The volume finishes off with a collection of work on contemporary PNT applications such as survey and mobile mapping, precision agriculture, wearable systems, automated driving, train control, commercial unmanned aircraft systems, aviation, and navigation in the unique Arctic environment. In addition, this text: Serves as a complete reference and handbook for professionals and students interested in the broad range of PNT subjects Includes chapters that focus on the latest developments in GNSS and other navigation sensors, techniques, and applications Illustrates interconnecting relationships between various types of technologies in order to assure more protected, tough, and accurate PNT Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications will appeal to all industry professionals, researchers, and academics involved with the science, engineering, and applications of position, navigation, and timing technologies. pnt21book.com




Star Altitude Curves


Book Description




All Source Positioning, Navigation and Timing


Book Description

This is the first book on the topic of all source positioning, navigation and timing (PNT) and how to solve the problem of PNT when the most widely-used measurement source available today, the GPS system, may be come unavailable, jammed or spoofed. Readers learn how to define the system architecture as well as the algorithms for GPS-denied and GPS-challenged PNT systems. In addition, the book provides comprehensive coverage of the individual technologies used, such as celestial navigation, vision-based navigation, terrain referenced navigation, gravity anomaly referenced navigation, signal of opportunity (SOO) based PNT, and collaborative PNT. Celestial Navigation is discussed, with stars and satellite used as reference, and star-tracker technology also included. Propagation based timing solutions are explored and the basic principles of oscillators and clocks presented. Initial alignment of strap-down navigation systems is explored, including initial alignment as a Kalman filter problem. Velocimeter/Dead reckoning based navigation and its impact on visual odometry is also explained. Covering both theoretical and practical issues, and packed with equations and models, this book is useful for both the engineering student as well as the advanced practitioner.




Review


Book Description




GPS for Land Surveyors


Book Description

Since the last edition of this international bestseller, GPS has grown to become part of a larger international context, the Global Navigation Satellite System (GNSS). Both GPS and GNSS technologies are becoming ever more important in the everyday practice of survey and mappers. With GPS for Land Surveyors, Third Edition, a book written by a land s







Performance of new GNSS satellite clocks


Book Description

In Global Navigation Satellite Systems (GNSS), the on-board clocks are a key component from which timing and navigation signals are generated. This thesis reviews the performance of the first Passive Hydrogen Maser (PHM) launched by the Galileo system in 2008; and demonstrates how the new PHM can be consider as the best clock in space, pushing the physical clock error contribution below the noise floor of geodetic time transfer capabilities. Furthermore, overall GNSS clock peformance is reviewed