Analysis and Simulation of Noise in Nonlinear Electronic Circuits and Systems


Book Description

In electronic circuit and system design, the word noise is used to refer to any undesired excitation on the system. In other contexts, noise is also used to refer to signals or excitations which exhibit chaotic or random behavior. The source of noise can be either internal or external to the system. For instance, the thermal and shot noise generated within integrated circuit devices are in ternal noise sources, and the noise picked up from the environment through electromagnetic interference is an external one. Electromagnetic interference can also occur between different components of the same system. In integrated circuits (Ies), signals in one part of the system can propagate to the other parts of the same system through electromagnetic coupling, power supply lines and the Ie substrate. For instance, in a mixed-signal Ie, the switching activity in the digital parts of the circuit can adversely affect the performance of the analog section of the circuit by traveling through the power supply lines and the substrate. Prediction of the effect of these noise sources on the performance of an electronic system is called noise analysis or noise simulation. A methodology for the noise analysis or simulation of an electronic system usually has the following four components: 2 NOISE IN NONLINEAR ELECTRONIC CIRCUITS • Mathematical representations or models for the noise sources. • Mathematical model or representation for the system that is under the in fluence of the noise sources.




The Best of ICCAD


Book Description

In 2002, the International Conference on Computer Aided Design (ICCAD) celebrates its 20th anniversary. This book commemorates contributions made by ICCAD to the broad field of design automation during that time. The foundation of ICCAD in 1982 coincided with the growth of Large Scale Integration. The sharply increased functionality of board-level circuits led to a major demand for more powerful Electronic Design Automation (EDA) tools. At the same time, LSI grew quickly and advanced circuit integration became widely avail able. This, in turn, required new tools, using sophisticated modeling, analysis and optimization algorithms in order to manage the evermore complex design processes. Not surprisingly, during the same period, a number of start-up com panies began to commercialize EDA solutions, complementing various existing in-house efforts. The overall increased interest in Design Automation (DA) re quired a new forum for the emerging community of EDA professionals; one which would be focused on the publication of high-quality research results and provide a structure for the exchange of ideas on a broad scale. Many of the original ICCAD volunteers were also members of CANDE (Computer-Aided Network Design), a workshop of the IEEE Circuits and Sys tem Society. In fact, it was at a CANDE workshop that Bill McCalla suggested the creation of a conference for the EDA professional. (Bill later developed the name).




Dynamic Translinear and Log-Domain Circuits


Book Description

Dynamic Translinear and Log-Domain Circuits: Analysis and Synthesis covers both the analysis and synthesis of translinear circuits. The theory is presented using one unifying framework for both static and dynamic translinear networks, which is based on a current-mode approach. General analysis methods are presented, including the large-signal and non-stationary analysis of noise. A well-structured synthesis method is described greatly enhancing the designability of log-domain and translinear circuits. Comparisons are made with respect to alternative analysis and synthesis methods presented in the literature. The theory is illustrated and verified by various examples and realizations.




Numerical Methods in Electromagnetics


Book Description

This special volume provides a broad overview and insight in the way numerical methods are being used to solve the wide variety of problems in the electronics industry. Furthermore its aim is to give researchers from other fields of application the opportunity to benefit from the results wich have been obtained in the electronics industry.* Complete survey of numerical methods used in the electronic industry* Each chapter is selfcontained* Presents state-of-the-art applications and methods* Internationally recognised authors




Noise Analysis of Radio Frequency Circuits


Book Description

Predicting noise in RF systems at the design stage is extremely important. This book concentrates on developing noise simulation techniques for RF circuits. The authors present a novel approach of performing noise analysis for RF circuits.




Fabrication and Design of Resonant Microdevices


Book Description

This book discusses the main issues of fabrication and design, and applications of micromachined resonant devices, including techniques commonly used for processing the output signal of resonant micro-electro-mechanical systems (MEMS). Concepts of resonance are introduced, with an overview of fabrication techniques for micromachined devices – important to understand as design options will depend on how the device will be fabricated. Also explained: excitation and signal detection methods; an analytic model of device behavior (a valuable design tool); numerical simulation techniques; issues of damping and noise for resonant MEMS; electronic interfacing; packaging issues; and numerous examples of resonant MEMS from academia and industry. - Offers numerous academic and industrial examples of resonant MEMS - Provides an analytic model of device behaviour - Explains two-port systems in detail - Devotes ample space to excitation and signal detection methods - Covers issues of damping and noise for resonant MEMS, two topics of particular importance for high-Q devices




Analog Circuit Design


Book Description

Today digital signal processing systems use advanced CMOS technologies requiring the analog-to-digital converter to be implemented in the same (digital) technology. Such an implementation requires special circuit techniques. Furthermore the susceptibility of converters to ground bounce or digital noise is an important design criterion. In this part different converters and conversion techniques are described that are optimized for receiver applications. Part II, Sensor and Actuator Interfaces, interfaces for sensors and actuators shape the gates through which information is acquired from the real world into digital information systems, and vice versa. The interfaces should include analog signal conditioning, analog-to-digital conversion, digital bus interfaces and data-acquisition networks. To simplify the use of data-acquisition systems additional features should be incorporated, like self-test, and calibration




Statistical Performance Analysis and Modeling Techniques for Nanometer VLSI Designs


Book Description

Since process variation and chip performance uncertainties have become more pronounced as technologies scale down into the nanometer regime, accurate and efficient modeling or characterization of variations from the device to the architecture level have become imperative for the successful design of VLSI chips. This book provides readers with tools for variation-aware design methodologies and computer-aided design (CAD) of VLSI systems, in the presence of process variations at the nanometer scale. It presents the latest developments for modeling and analysis, with a focus on statistical interconnect modeling, statistical parasitic extractions, statistical full-chip leakage and dynamic power analysis considering spatial correlations, statistical analysis and modeling for large global interconnects and analog/mixed-signal circuits. Provides readers with timely, systematic and comprehensive treatments of statistical modeling and analysis of VLSI systems with a focus on interconnects, on-chip power grids and clock networks, and analog/mixed-signal circuits; Helps chip designers understand the potential and limitations of their design tools, improving their design productivity; Presents analysis of each algorithm with practical applications in the context of real circuit design; Includes numerical examples for the quantitative analysis and evaluation of algorithms presented. Provides readers with timely, systematic and comprehensive treatments of statistical modeling and analysis of VLSI systems with a focus on interconnects, on-chip power grids and clock networks, and analog/mixed-signal circuits; Helps chip designers understand the potential and limitations of their design tools, improving their design productivity; Presents analysis of each algorithm with practical applications in the context of real circuit design; Includes numerical examples for the quantitative analysis and evaluation of algorithms presented.




A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits


Book Description

Analog circuit design is often the bottleneck when designing mixed analog-digital systems. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits presents a new methodology based on a top-down, constraint-driven design paradigm that provides a solution to this problem. This methodology has two principal advantages: (1) it provides a high probability for the first silicon which meets all specifications, and (2) it shortens the design cycle. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits is part of an ongoing research effort at the University of California at Berkeley in the Electrical Engineering and Computer Sciences Department. Many faculty and students, past and present, are working on this design methodology and its supporting tools. The principal goals are: (1) developing the design methodology, (2) developing and applying new tools, and (3) `proving' the methodology by undertaking `industrial strength' design examples. The work presented here is neither a beginning nor an end in the development of a complete top-down, constraint-driven design methodology, but rather a step in its development. This work is divided into three parts. Chapter 2 presents the design methodology along with foundation material. Chapters 3-8 describe supporting concepts for the methodology, from behavioral simulation and modeling to circuit module generators. Finally, Chapters 9-11 illustrate the methodology in detail by presenting the entire design cycle through three large-scale examples. These include the design of a current source D/A converter, a Sigma-Delta A/D converter, and a video driver system. Chapter 12 presents conclusions and current research topics. A Top-Down, Constraint-Driven Design Methodology for Analog Integrated Circuits will be of interest to analog and mixed-signal designers as well as CAD tool developers.




Stochastic Process Variation in Deep-Submicron CMOS


Book Description

One of the most notable features of nanometer scale CMOS technology is the increasing magnitude of variability of the key device parameters affecting performance of integrated circuits. The growth of variability can be attributed to multiple factors, including the difficulty of manufacturing control, the emergence of new systematic variation-generating mechanisms, and most importantly, the increase in atomic-scale randomness, where device operation must be described as a stochastic process. In addition to wide-sense stationary stochastic device variability and temperature variation, existence of non-stationary stochastic electrical noise associated with fundamental processes in integrated-circuit devices represents an elementary limit on the performance of electronic circuits. In an attempt to address these issues, Stochastic Process Variation in Deep-Submicron CMOS: Circuits and Algorithms offers unique combination of mathematical treatment of random process variation, electrical noise and temperature and necessary circuit realizations for on-chip monitoring and performance calibration. The associated problems are addressed at various abstraction levels, i.e. circuit level, architecture level and system level. It therefore provides a broad view on the various solutions that have to be used and their possible combination in very effective complementary techniques for both analog/mixed-signal and digital circuits. The feasibility of the described algorithms and built-in circuitry has been verified by measurements from the silicon prototypes fabricated in standard 90 nm and 65 nm CMOS technology.