Time-Reversal Symmetry


Book Description

This book introduces new developments in the field of Time-Reversal Symmetry presenting, for the first time, the Wigner time-reversal operator in the form of a product of two- or three time-reversal operators of lower symmetry. The action of these operators leads to the sign change of only one or two angular momentum components, not of all of them. It demonstrates that there are six modes of time-reversal symmetry breaking that do not lead to the complete disappearance of the symmetry but to its lowering. The full restoration of the time-reversal symmetry in the six cases mentioned is possible by introducing six types of metaparticles. The book also confirms the presence of six additional time-reversal operators using a group-theoretical method. The problem is only where to seek these metaparticles. The book discusses time-reversal symmetry in classical mechanics, classical and relativistic electrodynamics, quantum mechanics and theory of quantized fields, including dynamical reversibility and statistical irreversibility of the time, Wigner’s and Herring’s criteria, Kramers theorem, selection rules due to time-reversal symmetry, Onsager’s relations, Poincaré recurrence theorem, and CPT theorem. It particularly focuses attention on time-reversal symmetry violation. It is proposed a new method of testing the time-reversal symmetry, which is confirmed experimentally by EPR spectroscopy data. It shows that the traditional black-white point groups of magnetic symmetry are not applicable to magnetic systems with Kramers degeneration of energy levels and that magnetic groups of four-color symmetry are adequate for them. Further, it addresses the predicted structural distortions in Kramers three-homonuclear magnetic clusters due to time-reversal symmetry that have been identified experimentally. Lastly, it proposes a method of synthesis of two-nuclear coordination compounds with predictable magnetic properties, based on the application of the time-reversal transformation that was confirmed experimentally.




Selected Papers of K.C. Chou


Book Description

Professor Kuang-Chao Chou (also known as Guang-Zhao Zhou) is the former President of Chinese Academy of Sciences. He has been elected as the Academician of Chinese Academy of Sciences, Foreign Associate of the US National Academy of Sciences, Fellow of the Third World Academy of Science, Foreign Member of Soviet (Russian) Academy of Sciences, Czechoslovak Academy of Sciences, Bulgarian Academy of Sciences, Romania Academy of Sciences, Mongolian Academy of Sciences, the European Academy of Arts, Sciences and Humanities, Membre fondateur Academie Francophone d'Ingenieurs.He also served as the director of Institute of Theoretical Physics at the Chinese Academy of Sciences, the Dean of the Science School of Tsinghua University, the Chairman of the China Association for Sciences and Technology, the President of Pacific Science Association, Vice President of Third World Academy of Sciences.?Zhou is a first rate physicist: broad, powerful and very quick in grasping new ideas. His style of doing physics reminds me of that of Landau, Salam, and of Teller.?C N Yang?His published papers have won uniformly high praises by the international scientific community and his articles are always written with depth and elegance.?T D LeeThis volume presents a collection of selected papers written by Prof Chou. The papers are organized into four parts according to the subject of research areas and the language of publishing journals. Part I (in English) and Part III (in Chinese) are papers on field theories, particle physics and nuclear physics, Part II (in English) and Part IV (in Chinese) are papers on statistical physics and condensed matter physics. From the published papers, it illustrates and is clearly evident how Prof Chou was constantly at the frontiers of theoretical physics in various periods and carried out creative research works experimenting with initial ideas and motivations, as well as how he has driven and worked in different key research directions of theoretical physics, all for which he has made significant contributions to various interesting research areas and interdisciplinary fields.




The Physical Basis of The Direction of Time


Book Description

The asymmetry of natural phenomena under time reversal is striking. Here Zehinvestigates the most important classes of physical phenomena that characterize the arrow of time, discussing their interrelations as well as striving to uncover a cosmological common root of the phenomena, such as the time-independent wave function of the universe. The description of irreversible phenomena is shown to be fundamentally "observer-related". Both physicists and philosophers of science who reviewed the first edition considered this book a magnificent survey, a concise, technically sophisticated, up-to-date discussion of the subject, showing fine sensivity to some of the crucial philosophicalsubtleties. This new and expanded edition will be welcomed by both students and specialists.




Modeling and Computations in Electromagnetics


Book Description

This is nothing less than an essential text in what is a new and growing discipline. Electromagnetic modeling and computations is expanding as a result of the steadily increasing demand for designing electrical devices, modeling electromagnetic materials, and simulating electromagnetic fields in nanoscale structures. The aim of this volume is to bring together prominent worldwide experts to review state-of-the-art developments and future trends of modeling and computations in electromagnetics.




Time Reversal Acoustics


Book Description

This book highlights time reversal acoustics, techniques based on the symmetry properties of acoustic fields. It has the unique feature that the first eleven chapters of the book are on the indepth studies of the theories of time reversal acoustics. The remaining chapters are on the four major applications of time reversal acoustics, together with their experimental setups and case studies: underwater communication, seismic exploration,nondestructive evaluation, and medical ultrasound imaging.. The gauge invariance approach to acoustic fields, proposed by the author in 2007, is confirmed by the successful fabrication of acoustical metamaterials and the applications of time reversal acoustics to superresolution. The book also presents groundbreaking applications of time reversal acoustics to underwater communication technology and the application of metamaterials to time reversal acoustics.




Modern Quantum Mechanics


Book Description

A comprehensive and engaging textbook, providing a graduate-level, non-historical, modern introduction of quantum mechanical concepts.




Physical Properties of High Temperature Superconductors V


Book Description

The publication of Volume V of Physical Properties of High Temperature Superconductors is expected in March, 1996. It will have chapters of interest for both fundamental studies and applied research. The topics discussed are expected to include the electromagnetic response (penetration depth and surface resistance), local lattice distortions, the influence of vortex fluctuations on macroscopic behavior, the properties of superlattices, and the symmetry of the superconducting order parameter.




Time and Chance


Book Description

This book is an attempt to get to the bottom of an acute and perennial tension between our best scientific pictures of the fundamental physical structure of the world and our everyday empirical experience of it. The trouble is about the direction of time. The situation (very briefly) is that it is a consequence of almost every one of those fundamental scientific pictures--and that it is at the same time radically at odds with our common sense--that whatever can happen can just as naturally happen backwards. Albert provides an unprecedentedly clear, lively, and systematic new account--in the context of a Newtonian-Mechanical picture of the world--of the ultimate origins of the statistical regularities we see around us, of the temporal irreversibility of the Second Law of Thermodynamics, of the asymmetries in our epistemic access to the past and the future, and of our conviction that by acting now we can affect the future but not the past. Then, in the final section of the book, he generalizes the Newtonian picture to the quantum-mechanical case and (most interestingly) suggests a very deep potential connection between the problem of the direction of time and the quantum-mechanical measurement problem. The book aims to be both an original contribution to the present scientific and philosophical understanding of these matters at the most advanced level, and something in the nature of an elementary textbook on the subject accessible to interested high-school students.




Strongly Correlated Fermi Systems


Book Description

This book focuses on the topological fermion condensation quantum phase transition (FCQPT), a phenomenon that reveals the complex behavior of all strongly correlated Fermi systems, such as heavy fermion metals, quantum spin liquids, quasicrystals, and two-dimensional systems, considering these as a new state of matter. The book combines theoretical evaluations with arguments based on experimental grounds demonstrating that the entirety of very different strongly correlated Fermi systems demonstrates a universal behavior induced by FCQPT. In contrast to the conventional quantum phase transition, whose physics in the quantum critical region are dominated by thermal or quantum fluctuations and characterized by the absence of quasiparticles, the physics of a Fermi system near FCQPT are controlled by a system of quasiparticles resembling the Landau quasiparticles. The book discusses the modification of strongly correlated systems under the action of FCQPT, representing the “missing” instability, which paves the way for developing an entirely new approach to condensed matter theory; and presents this physics as a new method for studying many-body objects. Based on the authors’ own theoretical investigations, as well as salient theoretical and experimental studies conducted by others, the book is well suited for both students and researchers in the field of condensed matter physics.




Symmetry and Condensed Matter Physics


Book Description

Unlike existing texts, this book blends for the first time three topics in physics - symmetry, condensed matter physics and computational methods - into one pedagogical textbook. It includes new concepts in mathematical crystallography; experimental methods capitalizing on symmetry aspects; non-conventional applications such as Fourier crystallography, color groups, quasicrystals and incommensurate systems; as well as concepts and techniques behind the Landau theory of phase transitions. Adopting a computational approach to the application of group theoretical techniques to solving symmetry related problems, it dramatically alleviates the need for intensive calculations usually found in the presentation of symmetry. Writing computer programs helps the student achieve a firm understanding of the underlying concepts, and sample programs, based on Mathematica, are presented throughout the book. Containing over 150 exercises, this textbook is ideal for graduate students in condensed matter physics, materials science, and chemistry. Solutions and computer programs are available online at www.cambridge.org/9780521828451.