Road from Geochemistry to Geochemometrics


Book Description

This book highlights major problems in the statistical analysis of compositions that have been known for over a century, as well as the corresponding solutions that have been put forward by specialists over the past 30 years. The basic assumptions of normality or multi-normality are pointed out and methods to test and achieve them are also covered. The conventional major and trace element geochemistry and modeling equations are discussed, and are followed by a more sophisticated multidimensional approach to data handling. The book’s main focus is on the use of statistical techniques to facilitate data interpretation. It also highlights the classification (or nomenclature) and tectonic discrimination aspects for both igneous and sedimentary rocks. The book concludes by discussing computer programs that are helping pave the way from geochemistry to geochemometrics. Written by a leading expert in the area of geochemistry, it offers a valuable guide for students and professionals in the area.




Chemical, Physical and Temporal Evolution of Magmatic Systems


Book Description

Our understanding of the physical and chemical processes that regulate the evolution of magmatic systems has improved tremendously since the foundations were laid down 100 years ago by Bowen. The concept of crustal magma chambers has progressively evolved from molten-rock vats to thermally, chemically and physically heterogeneous reservoirs that are kept active by the periodic injection of magma. This new model, while more complex, provides a better framework to interpret volcanic activity and decipher the information contained in intrusive and extrusive rocks. Igneous and metamorphic petrology, geochemistry, geochronology, and numerical modelling, all contributed towards this new picture of crustal magmatic systems. This book provides an overview of the wide range of approaches that can nowadays be used to understand the chemical, physical and temporal evolution of magmatic and volcanic systems.







The Encyclopedia of Volcanoes


Book Description

Volcanoes are unquestionably one of the most spectacular and awe-inspiring features of the physical world. Our paradoxical fascination with them stems from their majestic beauty and powerful, sometimes deadly, destructiveness. Notwithstanding the tremendous advances in volcanology since ancient times, some of the mystery surrounding volcanic eruptions remains today. The Encyclopedia of Volcanoes summarizes our present knowledge of volcanoes; it provides a comprehensive source of information on the causes of volcanic eruptions and both the destructive and beneficial effects. The early chapters focus on the science of volcanism (melting of source rocks, ascent of magma, eruption processes, extraterrestrial volcanism, etc.). Later chapters discuss human interface with volcanoes, including the history of volcanology, geothermal energy resources, interaction with the oceans and atmosphere, health aspects of volcanism, mitigation of volcanic disasters, post-eruption ecology, and the impact of eruptions on organismal biodiversity. - Provides the only comprehensive reference work to cover all aspects of volcanology - Written by nearly 100 world experts in volcanology - Explores an integrated transition from the physical process of eruptions through hazards and risk, to the social face of volcanism, with an emphasis on how volcanoes have influenced and shaped society - Presents hundreds of color photographs, maps, charts and illustrations making this an aesthetically appealing reference - Glossary of 3,000 key terms with definitions of all key vocabulary items in the field is included




Geological Melts


Book Description

Volume 87 of Reviews in Mineralogy and Geochemistry covers fundamental aspects of the nature of silicate melts and the implications for the systems in which they participate, both technological and natural. The contents of this volume may perhaps best be summarized as structure – properties – dynamics. The volume contains syntheses of short and medium range order, structure-property relationships, and computation-based simulations of melt structure. It continues with analyses of the properties (mechanical, diffusive, thermochemical, redox, nucleation, rheological) of melts. The dynamic behavior of melts in magmatic and volcanic systems, is then treated in the context of their behavior in magma mixing, strain localization, frictional melting, magmatic fragmentation, and hot sintering. Finally, the non-magmatic, extraterrestrial and prehistoric roles of melt and glass are presented in their respective contexts.







The Role of Volatiles in the Genesis, Evolution and Eruption of Arc Magmas


Book Description

The subduction zone volatile cycle is key to understanding the petrogenesis, transport, storage and eruption of arc magmas. Volatiles control the flux of slab components into the mantle wedge, are responsible for melt generation through lowering the solidi of mantle materials and influence the crystallizing phase assemblages in the overriding crust. Further, the rates and extents of degassing during magma storage and decompression affect magma rheology, ultimately control eruption style and have consequences for the environmental impact of explosive arc volcanism. This book highlights recent progress in constraining the role of volatiles in magmatic processes. Individual book sections are devoted to tracing volatiles from the subducting slab to the overriding crust, their role in subvolcanic processes and eruption triggering, as well as magmatic-hydrothermal systems and volcanic degassing. For the first time, all aspects of the overarching theme of volatile cycling are covered in detail within a single volume.




Deep Carbon


Book Description

A comprehensive guide to carbon inside Earth - its quantities, movements, forms, origins, changes over time and impact on planetary processes. This title is also available as Open Access on Cambridge Core.




Remote Sensing of Volcanoes and Volcanic Processes


Book Description

This volume focuses on how advances in both remote sensing and modelling can be brought together to improve our understanding of the behaviour of active volcanoes. It includes review papers, papers reporting technical advances and case studies showing how the integration of remote-sensing observations with models can be put to good use.




Volcanic Eruptions and Their Repose, Unrest, Precursors, and Timing


Book Description

Volcanic eruptions are common, with more than 50 volcanic eruptions in the United States alone in the past 31 years. These eruptions can have devastating economic and social consequences, even at great distances from the volcano. Fortunately many eruptions are preceded by unrest that can be detected using ground, airborne, and spaceborne instruments. Data from these instruments, combined with basic understanding of how volcanoes work, form the basis for forecasting eruptionsâ€"where, when, how big, how long, and the consequences. Accurate forecasts of the likelihood and magnitude of an eruption in a specified timeframe are rooted in a scientific understanding of the processes that govern the storage, ascent, and eruption of magma. Yet our understanding of volcanic systems is incomplete and biased by the limited number of volcanoes and eruption styles observed with advanced instrumentation. Volcanic Eruptions and Their Repose, Unrest, Precursors, and Timing identifies key science questions, research and observation priorities, and approaches for building a volcano science community capable of tackling them. This report presents goals for making major advances in volcano science.