Tumor Organoids


Book Description

Cancer cell biology research in general, and anti-cancer drug development specifically, still relies on standard cell culture techniques that place the cells in an unnatural environment. As a consequence, growing tumor cells in plastic dishes places a selective pressure that substantially alters their original molecular and phenotypic properties.The emerging field of regenerative medicine has developed bioengineered tissue platforms that can better mimic the structure and cellular heterogeneity of in vivo tissue, and are suitable for tumor bioengineering research. Microengineering technologies have resulted in advanced methods for creating and culturing 3-D human tissue. By encapsulating the respective cell type or combining several cell types to form tissues, these model organs can be viable for longer periods of time and are cultured to develop functional properties similar to native tissues. This approach recapitulates the dynamic role of cell–cell, cell–ECM, and mechanical interactions inside the tumor. Further incorporation of cells representative of the tumor stroma, such as endothelial cells (EC) and tumor fibroblasts, can mimic the in vivo tumor microenvironment. Collectively, bioengineered tumors create an important resource for the in vitro study of tumor growth in 3D including tumor biomechanics and the effects of anti-cancer drugs on 3D tumor tissue. These technologies have the potential to overcome current limitations to genetic and histological tumor classification and development of personalized therapies.




Biofabrication and 3D Tissue Modeling


Book Description

3D tissue modelling is an emerging field used for the investigation of disease mechanisms and drug development. Integrating physics, chemistry, materials science, and stem cell and biomedical engineering, this book provides a complete foundation to this exciting, and interdisciplinary field.




Branching Morphogenesis


Book Description

Branching morphogenesis, the creation of branched structures in the body, is a key feature of animal and plant development. This book brings together, for the first time, expert researchers working on a variety of branching systems to present a state-of-the-art view of the mechanisms that control branching morphogenesis. Systems considered range from single cells, to blood vessel and drainage duct systems to entire body plans, and approaches range from observation through experiment to detailed biophysical modelling. The result is an integrated overview of branching.




Biomaterials for 3D Tumor Modeling


Book Description

Biomaterials for 3D Tumor Modeling reviews the fundamentals and most relevant areas of the latest advances of research of 3D cancer models, focusing on biomaterials science, tissue engineering, drug delivery and screening aspects. The book reviews advanced fundamental topics, including the causes of cancer, existing cancer models, angiogenesis and inflammation during cancer progression, and metastasis in 3D biomaterials. Then, the most relevant biomaterials are reviewed, including methods for engineering and fabrication of biomaterials. 3D models for key biological systems and types of cancer are also discussed, including lung, liver, oral, prostate, pancreatic, ovarian, bone and pediatric cancer. This book is suitable for those working in the disciplines of materials science, biochemistry, genetics, molecular biology, drug delivery and regenerative medicine. - Reviews key biomaterials topics, including synthetic biomaterials, hydrogels, e-spun materials and nanoparticles - Provides a comprehensive overview of 3D cancer models for key biological systems and cancer types - Includes an overview of advanced fundamental concepts for an interdisciplinary audience in materials science, biochemistry, regenerative medicine and drug delivery




Cell Culture Technology


Book Description

This textbook provides an overview on current cell culture techniques, conditions, and applications specifically focusing on human cell culture. This book is based on lectures, seminars and practical courses in stem cells, tissue engineering, regenerative medicine and 3D cell culture held at the University of Natural Resources and Life Sciences Vienna BOKU and the Gottfried Wilhelm Leibniz University Hannover, complemented by contributions from international experts, and therefore delivers in a compact and clear way important theoretical, as well as practical knowledge to advanced graduate students on cell culture techniques and the current status of research. The book is written for Master students and PhD candidates in biotechnology, tissue engineering and biomedicine working with mammalian, and specifically human cells. It will be of interest to doctoral colleges, Master- and PhD programs teaching courses in this area of research.




Technology Platforms for 3D Cell Culture


Book Description

Technology Platforms for 3D Cell Culture: A Users Guide points to the options available to perform 3D culture, shows where such technology is available, explains how it works, and reveals how it can be used by scientists working in their own labs. Offers a comprehensive, focused guide to the current state-of-the-art technologies available for 3D cell culture Features contributions from leading developers and researchers active in 3D cell technology Gives clear instruction and guidance on performing specific 3D culture methods, along with colour illustrations and examples of where such technologies have been successfully applied Includes information on resources and technical support to help initiate the use of 3D culture methods




Engineering 3D Tissue Test Systems


Book Description

Engineering 3D Tissue Test Systems provides an introduction to, and unique coverage of, a rapidly evolving area in biomaterials engineering. It reveals the current and future research responses, the current and future diagnostic applications, and provides a comprehensive overview to foster innovation. It offers insight into the importance of 3D systems and their use as benchtop models, spanning applications from basic scientific research to clinical diagnostics. Methods and limitations of building 3D tissue structures are evaluated, with attention given to the cellular, polymeric, and fabrication instrumentation components. The book covers the important aspects of polymeric tissue test systems, highlighting the needs and constraints of the industry, and includes a chapter on regulatory and pricing issues.




Frontiers in Tissue Engineering


Book Description

Frontiers in Tissue Engineering is a carefully edited compilation of state-of-the-art contributions from an international authorship of experts in the diverse subjects that make up tissue engineering. A broad representation of the medical, scientific, industrial and regulatory community is detailed in the book. The work is an authoritative and comprehensive reference source for scientists and clinicians working in this emerging field. The book is divided into three parts: fundamentals and methods of tissue engineering, tissue engineering applied to specialised tissues, and tissue engineering applied to organs. The text offers many novel approaches, including a detailed coverage of cell-tissue interactions at cellular and molecular levels; cell-tissue surface, biochemical, and mechanical environments; biomaterials; engineering design; tissue-organ function; new approaches to tissue-organ regeneration and replacement of function; ethical considerations of tissue engineering; and government regulation of tissue-engineered products.




Advances In Tissue Engineering


Book Description

Advances in Tissue Engineering is a unique volume and the first of its kind to bring together leading names in the field of tissue engineering and stem cell research. A relatively young science, tissue engineering can be seen in both scientific and sociological contexts and successes in the field are now leading to clinical reality. This book attempts to define the path from basic science to practical application. A contribution from the UK Stem Cell Bank and opinions of venture capitalists offer a variety of viewpoints, and exciting new areas of stem cell biology are highlighted. With over fifty stellar contributors, this book presents the most up-to-date information in this very topical and exciting field./a




Guide to Research Techniques in Neuroscience


Book Description

Modern neuroscience research is inherently multidisciplinary, with a wide variety of cutting edge new techniques to explore multiple levels of investigation. This Third Edition of Guide to Research Techniques in Neuroscience provides a comprehensive overview of classical and cutting edge methods including their utility, limitations, and how data are presented in the literature. This book can be used as an introduction to neuroscience techniques for anyone new to the field or as a reference for any neuroscientist while reading papers or attending talks. - Nearly 200 updated full-color illustrations to clearly convey the theory and practice of neuroscience methods - Expands on techniques from previous editions and covers many new techniques including in vivo calcium imaging, fiber photometry, RNA-Seq, brain spheroids, CRISPR-Cas9 genome editing, and more - Clear, straightforward explanations of each technique for anyone new to the field - A broad scope of methods, from noninvasive brain imaging in human subjects, to electrophysiology in animal models, to recombinant DNA technology in test tubes, to transfection of neurons in cell culture - Detailed recommendations on where to find protocols and other resources for specific techniques - "Walk-through" boxes that guide readers through experiments step-by-step