Tissue Hypoxia and Ischemia


Book Description

This monograph contains the proceedings of a symposium entitled, "Tissue Hypoxia and Ischemia," which was held at the Annenberg Center of the University of Pennsylvania on August 13 and 14, 1976. The symposium was jointly sponsored by the following groups at the University of Pennsylvania: the Respiratory Physiology Group of the Department of Physio logy, the Cardiopulmonary Section of the Department of Medicine, the Johnson Research Foundation, the Cerebrovascular Research Center of the Department of Neurology, the Head Injury Center of the Department of Neurosurgery, the. Institute for Environ mental Medicine, and the International Society on Oxygen Transport to Tissues. Its purpose was to promote an interdisciplinary discussion of oxygen sensors in various tissues and their mechanism of action as well as to examine the deleterious effects of hypoxia and ischemia with special reference to the brain. There were four sessions, one on the biochemistry of physi ologic oxygen sensors, two on the mechanism of oxygen sensing in tissues and one on the circulatory and metabolic aspects of cerebral hypoxia and ischemia.




Tissue Hypoxia and Ischemia


Book Description




Regulation of Tissue Oxygenation, Second Edition


Book Description

This presentation describes various aspects of the regulation of tissue oxygenation, including the roles of the circulatory system, respiratory system, and blood, the carrier of oxygen within these components of the cardiorespiratory system. The respiratory system takes oxygen from the atmosphere and transports it by diffusion from the air in the alveoli to the blood flowing through the pulmonary capillaries. The cardiovascular system then moves the oxygenated blood from the heart to the microcirculation of the various organs by convection, where oxygen is released from hemoglobin in the red blood cells and moves to the parenchymal cells of each tissue by diffusion. Oxygen that has diffused into cells is then utilized in the mitochondria to produce adenosine triphosphate (ATP), the energy currency of all cells. The mitochondria are able to produce ATP until the oxygen tension or PO2 on the cell surface falls to a critical level of about 4–5 mm Hg. Thus, in order to meet the energetic needs of cells, it is important to maintain a continuous supply of oxygen to the mitochondria at or above the critical PO2 . In order to accomplish this desired outcome, the cardiorespiratory system, including the blood, must be capable of regulation to ensure survival of all tissues under a wide range of circumstances. The purpose of this presentation is to provide basic information about the operation and regulation of the cardiovascular and respiratory systems, as well as the properties of the blood and parenchymal cells, so that a fundamental understanding of the regulation of tissue oxygenation is achieved.




Brain Hypoxia and Ischemia


Book Description

Brain Hypoxia and Ischemia explores the various aspects of cell death and survival that are crucial for understanding the basic mechanisms underlying brain hypoxia and ischemia. Chapters focus on a panorama of issues including the role of ion channels/transporters, mitochondria and apoptotic mechanisms, the roles of glutamate/NMDA, mechanisms in penumbral cells and the importance of intermittent hypoxia and gene regulation under these stressful conditions. The volume explores findings from both mammalian and invertebrate model systems and their applicability to human systems and diseases. Careful consideration is also given to differences in hypoxia and ischemia across development. This volume aims to increase the understanding of these mechanisms and to stimulate research on better diagnosis and treatment of diseases that afflict the brain and potentially other organs when O2 levels are dysregulated. Brain Hypoxia and Ischemia is designed for neuroscientists, clinicians and medical/graduate students for use in both basic research and clinical practice.













Cardiovascular Physiology Concepts


Book Description

Praised for its concise coverage, this highly accessible monograph lays a foundation for understanding the underlying concepts of normal cardiovascular function and offers a welcome alternative to a more mechanistically oriented approach or an encyclopedic physiology text. Clear explanations, ample illustrations and engaging clinical cases and problems provide the perfect guidance for self-directed learning and prepare you to excel in clinical practice.




The Newborn Brain


Book Description

Development of the brain and the emergence of the mind constitute some of the most important concerns of contemporary biology. Disturbances during fetal life may have profound implications for a child's future neurological and psychological development, which can in turn impact society. The new edition of this highly respected work presents a comprehensive review of the basic mechanisms of brain development and the pathophysiology of disorders of the infant brain, written by a team of distinguished neuroscientists, neonatologists, and neuropediatricians. The book follows the main milestones of brain development, from formation of the neural tube and wiring of the neurons in the brain. Neurotrophic factors, neurotransmitters, glial cell biology, cerebral circulation development of sensory functions are all described in detail. Furthermore, there are more philosophical chapters on the evolution of the brain and the emergence of consciousness. Clinical considerations are highlighted where relevant.




Basic Neurochemistry


Book Description

Illustrations by Lorie M. Gavulic, MFA Sponsored by the American Society for Neurochemistry.