Tooling for Composite Aerospace Structures


Book Description

Tooling for Composite Aerospace Structures: Manufacturing and Applications offers a comprehensive discussion on the design, analysis, manufacturing and operation of tooling that is used in the lamination of composite materials and assembly. Chapters cover general topics, the materials that are typically used for tooling, design aspects and recommendations on how to approach the design, and what engineers need to consider, including examples of designs and their pros and cons, how to perform these type of details, and the methods of inspection needed to ensure quality control. The book concludes with an outlook on the industry and the future.




Tooling for Composite Aerospace Structures


Book Description

Tooling for Composite Aerospace Structures: Manufacturing and Applications offers a comprehensive discussion on the design, analysis, manufacturing and operation of tooling that is used in the lamination of composite materials and assembly. Chapters cover general topics, the materials that are typically used for tooling, design aspects and recommendations on how to approach the design, and what engineers need to consider, including examples of designs and their pros and cons, how to perform these type of details, and the methods of inspection needed to ensure quality control. The book concludes with an outlook on the industry and the future. - Covers the entire lifecycle of tool design, starting with a discussion on composite materials and ending with new concepts and material - Introduces aspects of how to use modeling and simulation for tooling with detailed examples and validation data - Offers a list of materials and where they should be used depending on the application







Machining Technology for Composite Materials


Book Description

Machining processes play an important role in the manufacture of a wide variety of components. While the processes required for metal components are well-established, they cannot always be applied to composite materials, which instead require new and innovative techniques. Machining technology for composite materials provides an extensive overview and analysis of both traditional and non-traditional methods of machining for different composite materials.The traditional methods of turning, drilling and grinding are discussed in part one, which also contains chapters analysing cutting forces, tool wear and surface quality. Part two covers non-traditional methods for machining composite materials, including electrical discharge and laser machining, among others. Finally, part three contains chapters that deal with special topics in machining processes for composite materials, such as cryogenic machining and processes for wood-based composites.With its renowned editor and distinguished team of international contributors, Machining technology for composite materials is an essential reference particularly for process designers and tool and production engineers in the field of composite manufacturing, but also for all those involved in the fabrication and assembly of composite structures, including the aerospace, marine, civil and leisure industry sectors. - Provides an extensive overview of machining methods for composite materials - Chapters analyse cutting forces, tool wear and surface quality - Cryogenic machining and processes for wood based composites are discussed




Design and Analysis of Composite Structures


Book Description

Design and Analysis of Composite Structures enables graduate students and engineers to generate meaningful and robust designs of complex composite structures. Combining analysis and design methods for structural components, the book begins with simple topics such as skins and stiffeners and progresses through to entire components of fuselages and wings. Starting with basic mathematical derivation followed by simplifications used in real-world design, Design and Analysis of Composite Structures presents the level of accuracy and range of applicability of each method. Examples taken from actual applications are worked out in detail to show how the concepts are applied, solving the same design problem with different methods based on different drivers (e.g. cost or weight) to show how the final configuration changes as the requirements and approach change. Provides a toolkit of analysis and design methods to most situations encountered in practice, as well as analytical frameworks and the means to solving them for tackling less frequent problems. Presents solutions applicable to optimization schemes without having to run finite element models at each iteration, speeding up the design process and allowing examination of several more alternatives than traditional approaches. Includes guidelines showing how decisions based on manufacturing considerations affect weight and how weight optimization may adversely affect the cost. Accompanied by a website at www.wiley.com/go/kassapoglou hosting lecture slides and solutions to the exercises for instructors.




Manufacturing Technology for Aerospace Structural Materials


Book Description

The rapidly-expanding aerospace industry is a prime developer and user of advanced metallic and composite materials in its many products. This book concentrates on the manufacturing technology necessary to fabricate and assemble these materials into useful and effective structural components. Detailed chapters are dedicated to each key metal or alloy used in the industry, including aluminum, magnesium, beryllium, titanium, high strength steels, and superalloys. In addition the book deals with composites, adhesive bonding and presents the essentials of structural assembly. This book will be an important resource for all those involved in aerospace design and construction, materials science and engineering, as well as for metallurgists and those working in related sectors such as the automotive and mass transport industries. Flake Campbell Jr has over thirty seven years experience in the aerospace industry and is currently Senior Technical Fellow at the Boeing Phantom Works in Missouri, USA.* All major aerospace structural materials covered: metals and composites* Focus on details of manufacture and use* Author has huge experience in aerospace industry* A must-have book for materials engineers, design and structural engineers, metallurgical engineers and manufacturers for the aerospace industry




Advanced Composite Materials for Aerospace Engineering


Book Description

Advanced Composite Materials for Aerospace Engineering: Processing, Properties and Applications predominately focuses on the use of advanced composite materials in aerospace engineering. It discusses both the basic and advanced requirements of these materials for various applications in the aerospace sector, and includes discussions on all the main types of commercial composites that are reviewed and compared to those of metals. Various aspects, including the type of fibre, matrix, structure, properties, modeling, and testing are considered, as well as mechanical and structural behavior, along with recent developments. There are several new types of composite materials that have huge potential for various applications in the aerospace sector, including nanocomposites, multiscale and auxetic composites, and self-sensing and self-healing composites, each of which is discussed in detail. The book's main strength is its coverage of all aspects of the topics, including materials, design, processing, properties, modeling and applications for both existing commercial composites and those currently under research or development. Valuable case studies provide relevant examples of various product designs to enhance learning. - Contains contributions from leading experts in the field - Provides a comprehensive resource on the use of advanced composite materials in the aerospace industry - Discusses both existing commercial composite materials and those currently under research or development







Composite Structures


Book Description

Presents the latest strategies in the development and use of composite materials for large structures and the effects of defects Practical Design and Validation of Composites Structures: Effects of Defects offers an important guide to the use of fiber-reinforced composites and how they affect the durability and safety of engineering structures such as aircraft, ships, bridges, wind turbines as well as sporting equipment. The text draws on the authors’ direct experience in industry and academia to cover the most recent strategies in the development of composite structures and uniquely integrates the assessment of the effects of defects introduced during production. This comprehensive resource builds on an essential introduction to the characteristics of composites and the most common types of defects encountered in production. The authors review the recent manufacturing methods and technologies used for inspecting composite structures and the design issues related to an analysis of their failure and strength incorporating the variability of processing. The text also contains information on the latest regulatory requirements and the relevant standards associated with the testing and design within a robust design philosophy and approach. This important resource: Offers a comprehensive review of the most current regulatory developments in the use of composites for the construction of complex composite structures Presents information on the basic characteristics of composites Includes testing strategies for determining the impacts of production defects Reviews the most current manufacturing methods and inspection technologies in the field Contains methods for statistical analysis and processing of experimental effects of defects test data Written for professional engineers in mechanical engineering, automotive engineering, aerospace engineering, civil engineering, and energy engineering as well as industry and academic researchers, Practical Design and Validation of Composites Structures: Effects of Defects is the hands-on text that covers the essential information needed to understand the use of composites and how they affect complex engineering projects using composites.




Mechanics of Composite Structures


Book Description

An increase in the use of composite materials has led to a greater demand for engineers versed in the design of structures made from such materials. This book demonstrates advanced concepts and emphasises structures. More than 300 illustrations, 50 fully worked problems, and material properties data sets are included.