Physics of Ferroelectrics


Book Description

The past two decades have witnessed revolutionary breakthroughs in the understanding of ferroelectric materials, both from the perspective of theory and experiment. This book addresses the paradigmatic shifts in understanding brought about by these breakthroughs, including the consideration of novel fabrication methods and nanoscale applications of these materials, and new theoretical methods such as the effective Hamiltonian approach and density functional theory.




Single Quantum Dots


Book Description

Special focus is given to the optical and electronic properties of single quantum dots due to their potential applications in devices operating with single electrons and/or single photons. This includes quantum dots in electric and magnetic fields, cavity-quantum electrodynamics, nonclassical light generation, and coherent optical control of excitons.




Surface-Enhanced Raman Scattering


Book Description

Almost 30 years after the first reports on surface-enhanced Raman signals, the phenomenon of surface-enhanced Raman scattering (SERS) is now well established. SERS gained particular interest after single-molecule Raman spectroscopy had been demonstrated. This book summarizes and discusses present theoretical approaches that explain the phenomenon of SERS and reports on new and exciting experiments and applications of the fascinating spectroscopic effect.




The Monte Carlo Method in Condensed Matter Physics


Book Description

The Monte Carlo method is now widely used and commonly accepted as an important and useful tool in solid state physics and related fields. It is broadly recognized that the technique of "computer simulation" is complementary to both analytical theory and experiment, and can significantly contribute to ad vancing the understanding of various scientific problems. Widespread applications of the Monte Carlo method to various fields of the statistical mechanics of condensed matter physics have already been reviewed in two previously published books, namely Monte Carlo Methods in Statistical Physics (Topics Curro Phys. , Vol. 7, 1st edn. 1979, 2ndedn. 1986) and Applications of the Monte Carlo Method in Statistical Physics (Topics Curro Phys. , Vol. 36, 1st edn. 1984, 2nd edn. 1987). Meanwhile the field has continued its rapid growth and expansion, and applications to new fields have appeared that were not treated at all in the above two books (e. g. studies of irreversible growth phenomena, cellular automata, interfaces, and quantum problems on lattices). Also, new methodic aspects have emerged, such as aspects of efficient use of vector com puters or parallel computers, more efficient analysis of simulated systems con figurations, and methods to reduce critical slowing down at i>hase transitions. Taken together with the extensive activity in certain traditional areas of research (simulation of classical and quantum fluids, of macromolecular materials, of spin glasses and quadrupolar glasses, etc.




Numerical Methods for Metamaterial Design


Book Description

This book describes a relatively new approach for the design of electromagnetic metamaterials. Numerical optimization routines are combined with electromagnetic simulations to tailor the broadband optical properties of a metamaterial to have predetermined responses at predetermined wavelengths. After a review of both the major efforts within the field of metamaterials and the field of mathematical optimization, chapters covering both gradient-based and derivative-free design methods are considered. Selected topics including surrogate-base optimization, adaptive mesh search, and genetic algorithms are shown to be effective, gradient-free optimization strategies. Additionally, new techniques for representing dielectric distributions in two dimensions, including level sets, are demonstrated as effective methods for gradient-based optimization. Each chapter begins with a rigorous review of the optimization strategy used, and is followed by numerous examples that combine the strategy with either electromagnetic simulations or analytical solutions of the scattering problem. Throughout the text, we address the strengths and limitations of each method, as well as which numerical methods are best suited for different types of metamaterial designs. This book is intended to provide a detailed enough treatment of the mathematical methods used, along with sufficient examples and additional references, that senior level undergraduates or graduate students who are new to the fields of plasmonics, metamaterials, or optimization methods; have an understanding of which approaches are best-suited for their work and how to implement the methods themselves.




Novel Aspects of Diamond


Book Description

This book focuses on new research fields of diamond, from its growth to applications. It covers growth of atomically flat diamond films, properties and applications of diamond nanoparticles, diamond nanoparticles based electrodes and their applications for energy storage and conversion (supercapacitors, CO2 conversion etc.). Diamond for biomimetic interface, all electrochemical devices for in vivo detections and photo-electrochemical degradation of environmental hazards are highlighted.




Photomechanics


Book Description

Presenting the use of photonics techniques for measurement in mechanics, this book provides a state-of-the-art review of this active and rapidly growing field. It serves as an invaluable resource for readers to explore the current status and includes a wealth of information on the essential principles and methods. It provides a substantial background in a concise and simple way to enable physicists and engineers to assess, analyze and implement experimental systems needed to solve their specific measurement problems.







Introduction to Applied Solid State Physics


Book Description

The aim of this book is a discussion, at the introductory level, of some applications of solid state physics. The book evolved from notes written for a course offered three times in the Department of Physics of the University of California at Berkeley. The objects of the course were (a) to broaden the knowledge of graduate students in physics, especially those in solid state physics; (b) to provide a useful course covering the physics of a variety of solid state devices for students in several areas of physics; (c) to indicate some areas of research in applied solid state physics. To achieve these ends, this book is designed to be a survey of the physics of a number of solid state devices. As the italics indicate, the key words in this description are physics and survey. Physics is a key word because the book stresses the basic qualitative physics of the applications, in enough depth to explain the essentials of how a device works but not deeply enough to allow the reader to design one. The question emphasized is how the solid state physics of the application results in the basic useful property of the device. An example is how the physics of the tunnel diode results in a negative dynamic resistance. Specific circuit applications of devices are mentioned, but not emphasized, since expositions are available in the elec trical engineering textbooks given as references.




Laser Speckle and Related Phenomena


Book Description

With contributions by numerous experts