Topics in Multiphase Transport Phenomena


Book Description

Chapter 1 A Fluid-Porous Solid Reaction Model With Structural Changes, supplies details on modeling reactions with porous catalysts. The unique feature of this chapter is the pore closing, pore opening condition. This analysis is particularly useful for improving the design of storage batteries. Until the publication of “A Model for Discharge of Storage Batteries” by Dimitri Gidaspow and Bernard S. Baker, Journal of the Electrochemical Society,120, 1005-1010 (1973) the discharge of batteries was described by a purely empirical equation as a function of time. Chapter 2 Kinetics of the Reaction of CO2 With Solid K2CO3, complements U.S. patent No. 3,865,924 (February 11,1975) by Dimitri Gidaspow and Michael Onischak, on rates of carbon dioxide (CO2) capture. These rates of reaction were measured in a parallel plate channel at several laminar flow velocities. An integral equation flow analysis was used to obtain diffusion independent rates of reactions. Chapter 3 Silicon Deposition Reactor Using High Voltage Heating, describes an internally heated fluidized bed with no size limitations and with no bubble formation and its simulation. Chapter 4 Alternative Methods of Deriving Multiphase Field Equations, constitutes a literature review of approaches that have been used and/or proposed in the literature to derive multiphase flow equations which could form the basis of the theory and computation of dense suspensions of particulates such as coal-water slurries or blood flow.




Transport Phenomena in Multiphase Systems


Book Description

Engineering students in a wide variety of engineering disciplines from mechanical and chemical to biomedical and materials engineering must master the principles of transport phenomena as an essential tool in analyzing and designing any system or systems wherein momentum, heat and mass are transferred. This textbook was developed to address that need, with a clear presentation of the fundamentals, ample problem sets to reinforce that knowledge, and tangible examples of how this knowledge is put to use in engineering design. Professional engineers, too, will find this book invaluable as reference for everything from heat exchanger design to chemical processing system design and more. * Develops an understanding of the thermal and physical behavior of multiphase systems with phase change, including microscale and porosity, for practical applications in heat transfer, bioengineering, materials science, nuclear engineering, environmental engineering, process engineering, biotechnology and nanotechnology * Brings all three forms of phase change, i.e., liquid vapor, solid liquid and solid vapor, into one volume and describes them from one perspective in the context of fundamental treatment * Presents the generalized integral and differential transport phenomena equations for multi-component multiphase systems in local instance as well as averaging formulations. The molecular approach is also discussed with the connection between microscopic and molecular approaches * Presents basic principles of analyzing transport phenomena in multiphase systems with emphasis on melting, solidification, sublimation, vapor deposition, condensation, evaporation, boiling and two-phase flow heat transfer at the micro and macro levels * Solid/liquid/vapor interfacial phenomena, including the concepts of surface tension, wetting phenomena, disjoining pressure, contact angle, thin films and capillary phenomena, including interfacial balances for mass, species, momentum, and energy for multi-component and multiphase interfaces are discussed * Ample examples and end-of-chapter problems, with Solutions Manual and PowerPoint presentation available to the instructors




Transport Phenomena in Multiphase Flows


Book Description

This textbook provides a thorough presentation of the phenomena related to the transport of mass, momentum and energy. It lays all the basic physical principles, then for the more advanced readers, it offers an in-depth treatment with advanced mathematical derivations and ends with some useful applications of the models and equations in specific settings. The important idea behind the book is to unify all types of transport phenomena, describing them within a common framework in terms of cause and effect, respectively represented by the driving force and the flux of the transported quantity. The approach and presentation are original in that the book starts with a general description of transport processes, providing the macroscopic balance relations of fluid dynamics and heat and mass transfer, before diving into the mathematical realm of continuum mechanics to derive the microscopic governing equations at the microscopic level. The book is a modular teaching tool and can be used either for an introductory or for an advanced graduate course. The last 6 chapters will be of interest to more advanced researchers who might be interested in particular applications in physics, mechanical engineering or biomedical engineering. All chapters are complemented with exercises that are essential to complete the learning process.




Transport Phenomena


Book Description

Enables readers to apply transport phenomena principles to solve advanced problems in all areas of engineering and science This book helps readers elevate their understanding of, and their ability to apply, transport phenomena by introducing a broad range of advanced topics as well as analytical and numerical solution techniques. Readers gain the ability to solve complex problems generally not addressed in undergraduate-level courses, including nonlinear, multidimensional transport, and transient molecular and convective transport scenarios. Avoiding rote memorization, the author emphasizes a dual approach to learning in which physical understanding and problem-solving capability are developed simultaneously. Moreover, the author builds both readers' interest and knowledge by: Demonstrating that transport phenomena are pervasive, affecting every aspect of life Offering historical perspectives to enhance readers' understanding of current theory and methods Providing numerous examples drawn from a broad range of fields in the physical and life sciences and engineering Contextualizing problems in scenarios so that their rationale and significance are clear This text generally avoids the use of commercial software for problem solutions, helping readers cultivate a deeper understanding of how solutions are developed. References throughout the text promote further study and encourage the student to contemplate additional topics in transport phenomena. Transport Phenomena is written for advanced undergraduates and graduate students in chemical and mechanical engineering. Upon mastering the principles and techniques presented in this text, all readers will be better able to critically evaluate a broad range of physical phenomena, processes, and systems across many disciplines.




Transport Phenomena in Multiphase Systems


Book Description

This volume fills the need for a textbook presenting basic governing and constitutive equations, followed by several engineering problems on multiphase flow and transport that are not provided in current advanced texts, monographs, or handbooks. The unique emphasis of this book is on the sound formulation of the basic equations describing multiphase transport and how they can be used to design processes in selected industrially important fields. The clear underlying mathematical and physical bases of the interdisciplinary description of multiphase flow and transport are the main themes, along with advances in the kinetic theory for particle flow systems. The book may be used as an upper-level undergraduate or graduate textbook, as a reference by professionals in the design of processes that deal with a variety of multiphase systems, and by practitioners and experts in multiphase science in the area of computational fluid dynamics (CFD) at U.S. national laboratories, international universities, research laboratories and institutions, and in the chemical, pharmaceutical, and petroleum industries. Distinct from other books on multiphase flow, this volume shows clearly how the basic multiphase equations can be used in the design and scale-up of multiphase processes. The authors represent a combination of nearly two centuries of experience and innovative application of multiphase transport representing hundreds of publications and several books. This book serves to encapsulate the essence of their wisdom and insight, and:




Fundamentals of Multiphase Flow


Book Description

Publisher Description




Transport Phenomena in Porous Media III


Book Description

Fluid and flow problems in porous media have attracted the attention of industrialists, engineers and scientists from varying disciplines, such as chemical, environmental, and mechanical engineering, geothermal physics and food science. There has been a increasing interest in heat and fluid flows through porous media, making this book a timely and appropriate resource.Each chapter is systematically detailed to be easily grasped by a research worker with basic knowledge of fluid mechanics, heat transfer and computational and experimental methods. At the same time, the readers will be informed of the most recent research literature in the field, giving it dual usage as both a post-grad text book and professional reference.Written by the recent directors of the NATO Advanced Study Institute session on 'Emerging Technologies and Techniques in Porous Media' (June 2003), this book is a timely and essential reference for scientists and engineers within a variety of fields.




Advances in Multiphase Flow and Heat Transfer


Book Description

"Multiphase flow and heat transfer have found a wide range of applications in several engineering and science fields such as mechanical engineering, chemical and petrochemical engineering, nuclear engineering, energy engineering, material engineering, ocea"




Modelling and Applications of Transport Phenomena in Porous Media


Book Description

Transport phenomenain porous media are encounteredin various disciplines, e. g. , civil engineering, chemical engineering, reservoir engineering, agricul tural engineering and soil science. In these disciplines, problems are en countered in which various extensive quantities, e. g. , mass and heat, are transported through a porous material domain. Often, the void space of the porous material contains two or three fluid phases, and the various ex tensive quantities are transported simultaneously through the multiphase system. In all these disciplines, decisions related to a system's development and its operation have to be made. To do so a tool is needed that will pro vide a forecast of the system's response to the implementation of proposed decisions. This response is expressed in the form of spatial and temporal distributions of the state variables that describe the system's behavior. Ex amples of such state variables are pressure, stress, strain, density, velocity, solute concentration, temperature, etc. , for each phase in the system, The tool that enables the required predictions is the model. A model may be defined as a simplified version of the real porous medium system and the transport phenomena that occur in it. Because the model is a sim plified version of the real system, no unique model exists for a given porous medium system. Different sets of simplifying assumptions, each suitable for a particular task, will result in different models.




Computational Techniques for Multiphase Flows


Book Description

Mixed or multiphase flows of solid/liquid or solid/gas are commonly found in many industrial fields, and their behavior is complex and difficult to predict in many cases. The use of computational fluid dynamics (CFD) has emerged as a powerful tool for the understanding of fluid mechanics in multiphase reactors, which are widely used in the chemical, petroleum, mining, food, beverage and pharmaceutical industries. Computational Techniques for Multiphase Flows enables scientists and engineers to the undertand the basis and application of CFD in muliphase flow, explains how to use the technique, when to use it and how to interpret the results and apply them to improving aplications in process enginering and other multiphase application areas including the pumping, automotive and energy sectors. - Understandable guide to a complex subject - Important in many industries - Ideal for potential users of CFD