Topics in Stability and Bifurcation Theory
Author : David H. Sattinger
Publisher : Springer
Page : 197 pages
File Size : 38,65 MB
Release : 2006-11-15
Category : Mathematics
ISBN : 3540383336
Author : David H. Sattinger
Publisher : Springer
Page : 197 pages
File Size : 38,65 MB
Release : 2006-11-15
Category : Mathematics
ISBN : 3540383336
Author : Hans Troger
Publisher : Springer Science & Business Media
Page : 419 pages
File Size : 25,96 MB
Release : 2012-12-06
Category : Science
ISBN : 3709191688
Every student in engineering or in other fields of the applied sciences who has passed through his curriculum knows that the treatment of nonlin ear problems has been either avoided completely or is confined to special courses where a great number of different ad-hoc methods are presented. The wide-spread believe that no straightforward solution procedures for nonlinear problems are available prevails even today in engineering cir cles. Though in some courses it is indicated that in principle nonlinear problems are solveable by numerical methods the treatment of nonlinear problems, more or less, is considered to be an art or an intellectual game. A good example for this statement was the search for Ljapunov functions for nonlinear stability problems in the seventies. However things have changed. At the beginning of the seventies, start ing with the work of V.1. Arnold, R. Thom and many others, new ideas which, however, have their origin in the work of H. Poincare and A. A. Andronov, in the treatment of nonlinear problems appeared. These ideas gave birth to the term Bifurcation Theory. Bifurcation theory allows to solve a great class of nonlinear problems under variation of parameters in a straightforward manner.
Author : Yuri Kuznetsov
Publisher : Springer Science & Business Media
Page : 648 pages
File Size : 24,70 MB
Release : 2013-03-09
Category : Mathematics
ISBN : 1475739788
Providing readers with a solid basis in dynamical systems theory, as well as explicit procedures for application of general mathematical results to particular problems, the focus here is on efficient numerical implementations of the developed techniques. The book is designed for advanced undergraduates or graduates in applied mathematics, as well as for Ph.D. students and researchers in physics, biology, engineering, and economics who use dynamical systems as model tools in their studies. A moderate mathematical background is assumed, and, whenever possible, only elementary mathematical tools are used. This new edition preserves the structure of the first while updating the context to incorporate recent theoretical developments, in particular new and improved numerical methods for bifurcation analysis.
Author : Gerard Iooss
Publisher : Springer
Page : 324 pages
File Size : 17,29 MB
Release : 1997-12-02
Category : Mathematics
ISBN : 0387970681
This substantially revised second edition teaches the bifurcation of asymptotic solutions to evolution problems governed by nonlinear differential equations. Written not just for mathematicians, it appeals to the widest audience of learners, including engineers, biologists, chemists, physicists and economists. For this reason, it uses only well-known methods of classical analysis at foundation level, while the applications and examples are specially chosen to be as varied as possible.
Author : Rüdiger U. Seydel
Publisher : Springer Science & Business Media
Page : 493 pages
File Size : 35,15 MB
Release : 2009-11-27
Category : Mathematics
ISBN : 1441917403
Probably the first book to describe computational methods for numerically computing steady state and Hopf bifurcations. Requiring only a basic knowledge of calculus, and using detailed examples, problems, and figures, this is an ideal textbook for graduate students.
Author : Shouhong Wang
Publisher : World Scientific
Page : 391 pages
File Size : 17,10 MB
Release : 2005-06-27
Category : Science
ISBN : 9814480592
This book covers comprehensive bifurcation theory and its applications to dynamical systems and partial differential equations (PDEs) from science and engineering, including in particular PDEs from physics, chemistry, biology, and hydrodynamics.The book first introduces bifurcation theories recently developed by the authors, on steady state bifurcation for a class of nonlinear problems with even order nondegenerate nonlinearities, regardless of the multiplicity of the eigenvalues, and on attractor bifurcations for nonlinear evolution equations, a new notion of bifurcation.With this new notion of bifurcation, many longstanding bifurcation problems in science and engineering are becoming accessible, and are treated in the second part of the book. In particular, applications are covered for a variety of PDEs from science and engineering, including the Kuramoto-Sivashinsky equation, the Cahn-Hillard equation, the Ginzburg-Landau equation, reaction-diffusion equations in biology and chemistry, the Benard convection problem, and the Taylor problem. The applications provide, on the one hand, general recipes for other applications of the theory addressed in this book, and on the other, full classifications of the bifurcated attractor and the global attractor as the control parameters cross certain critical values, dictated usually by the eigenvalues of the linearized problems. It is expected that the book will greatly advance the study of nonlinear dynamics for many problems in science and engineering.
Author : Grard Iooss
Publisher : World Scientific
Page : 204 pages
File Size : 26,26 MB
Release : 1998
Category : Technology & Engineering
ISBN : 9789810237288
This textbook presents the most efficient analytical techniques in the local bifurcation theory of vector fields. It is centered on the theory of normal forms and its applications, including interaction with symmetries. The first part of the book reviews the center manifold reduction and introduces normal forms (with complete proofs). Basic bifurcations are studied together with bifurcations in the presence of symmetries. Special attention is given to examples with reversible vector fields, including the physical example given by the water waves. In this second edition, many problems with detailed solutions are added at the end of the first part (some systems being in infinite dimensions). The second part deals with the Couette-Taylor hydrodynamical stability problem, between concentric rotating cylinders. The spatial structure of various steady or unsteady solutions results directly from the analysis of the reduced system on a center manifold. In this part we also study bifurcations (simple here) from group orbits of solutions in an elementary way (avoiding heavy algebra). The third part analyzes bifurcations from time periodic solutions of autonomous vector fields. A normal form theory is developed, covering all cases, and emphasizing a partial Floquet reduction theory, which is applicable in infinite dimensions. Studies of period doubling as well as Arnold's resonance tongues are included in this part.
Author : S.-N. Chow
Publisher : Springer Science & Business Media
Page : 529 pages
File Size : 10,92 MB
Release : 2012-12-06
Category : Mathematics
ISBN : 1461381592
An alternative title for this book would perhaps be Nonlinear Analysis, Bifurcation Theory and Differential Equations. Our primary objective is to discuss those aspects of bifurcation theory which are particularly meaningful to differential equations. To accomplish this objective and to make the book accessible to a wider we have presented in detail much of the relevant background audience, material from nonlinear functional analysis and the qualitative theory of differential equations. Since there is no good reference for some of the mate rial, its inclusion seemed necessary. Two distinct aspects of bifurcation theory are discussed-static and dynamic. Static bifurcation theory is concerned with the changes that occur in the structure of the set of zeros of a function as parameters in the function are varied. If the function is a gradient, then variational techniques play an important role and can be employed effectively even for global problems. If the function is not a gradient or if more detailed information is desired, the general theory is usually local. At the same time, the theory is constructive and valid when several independent parameters appear in the function. In differential equations, the equilibrium solutions are the zeros of the vector field. Therefore, methods in static bifurcation theory are directly applicable.
Author : Hansjörg Kielhöfer
Publisher : Springer Science & Business Media
Page : 355 pages
File Size : 39,84 MB
Release : 2006-04-10
Category : Mathematics
ISBN : 0387216332
In the past three decades, bifurcation theory has matured into a well-established and vibrant branch of mathematics. This book gives a unified presentation in an abstract setting of the main theorems in bifurcation theory, as well as more recent and lesser known results. It covers both the local and global theory of one-parameter bifurcations for operators acting in infinite-dimensional Banach spaces, and shows how to apply the theory to problems involving partial differential equations. In addition to existence, qualitative properties such as stability and nodal structure of bifurcating solutions are treated in depth. This volume will serve as an important reference for mathematicians, physicists, and theoretically-inclined engineers working in bifurcation theory and its applications to partial differential equations.
Author : Albert C. J. Luo
Publisher : Springer Nature
Page : 418 pages
File Size : 22,99 MB
Release : 2020-01-30
Category : Mathematics
ISBN : 3030229106
This book systematically presents a fundamental theory for the local analysis of bifurcation and stability of equilibriums in nonlinear dynamical systems. Until now, one does not have any efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums. For instance, infinite-equilibrium dynamical systems have higher-order singularity, which dramatically changes dynamical behaviors and possesses the similar characteristics of discontinuous dynamical systems. The stability and bifurcation of equilibriums on the specific eigenvector are presented, and the spiral stability and Hopf bifurcation of equilibriums in nonlinear systems are presented through the Fourier series transformation. The bifurcation and stability of higher-order singularity equilibriums are presented through the (2m)th and (2m+1)th -degree polynomial systems. From local analysis, dynamics of infinite-equilibrium systems is discussed. The research on infinite-equilibrium systems will bring us to the new era of dynamical systems and control. Presents an efficient way to investigate stability and bifurcation of dynamical systems with higher-order singularity equilibriums; Discusses dynamics of infinite-equilibrium systems; Demonstrates higher-order singularity.