Charge Density Waves in Solids
Author : Gyula Hutiray
Publisher : Springer
Page : 572 pages
File Size : 33,99 MB
Release : 1985
Category : Science
ISBN :
Author : Gyula Hutiray
Publisher : Springer
Page : 572 pages
File Size : 33,99 MB
Release : 1985
Category : Science
ISBN :
Author : Alfred Zong
Publisher : Springer Nature
Page : 234 pages
File Size : 31,30 MB
Release : 2021-09-17
Category : Science
ISBN : 3030817512
This book advances understanding of light-induced phase transitions and nonequilibrium orders that occur in a broken-symmetry system. Upon excitation with an intense laser pulse, materials can undergo a nonthermal transition through pathways different from those in equilibrium. The mechanism underlying these photoinduced phase transitions has long been researched, but many details in this ultrafast, non-adiabatic regime still remain to be clarified. The work in this book reveals new insights into this phenomena via investigation of photoinduced melting and recovery of charge density waves (CDWs). Using several time-resolved diffraction and spectroscopic techniques, the author shows that the light-induced melting of a CDW is characterized by dynamical slowing-down, while the restoration of the symmetry-breaking order features two distinct timescales: A fast recovery of the CDW amplitude is followed by a slower re-establishment of phase coherence, the latter of which is dictated by the presence of topological defects in the CDW. Furthermore, after the suppression of the original CDW by photoexcitation, a different, competing CDW transiently emerges, illustrating how a hidden order in equilibrium can be unleashed by a laser pulse. These insights into CDW systems may be carried over to other broken-symmetry states, such as superconductivity and magnetic ordering, bringing us one step closer towards manipulating phases of matter using a laser pulse.
Author : George Gruner
Publisher : CRC Press
Page : 288 pages
File Size : 19,27 MB
Release : 2018-03-08
Category : Science
ISBN : 0429969562
?Density Waves in Solids is written for graduate students and scientists interested in solid-state sciences. It discusses the theoretical and experimental state of affairs of two novel types of broken symmetry ground states of metals, charge, and spin density waves. These states arise as the consequence of electron-phonon and electron-electron interactions in low-dimensional metals.Some fundamental aspects of the one-dimensional electron gas, and of the materials with anisotropic properties, are discussed first. This is followed by the mean field theory of the phases transitions?discussed using second quantized formalism?together with the various experimental observations on the transition and on the ground states. Fluctuation effects and the collective excitations are reviewed next, using the Ginzburg-Landau formalism, followed by the review of the interaction of these states with the underlying lattice and with impurities. The final chapters are devoted to the response of the ground states to external perturbations.
Author : Nick P. Proukakis
Publisher : Cambridge University Press
Page : 663 pages
File Size : 18,37 MB
Release : 2017-04-27
Category : Science
ISBN : 1108138624
Following an explosion of research on Bose–Einstein condensation (BEC) ignited by demonstration of the effect by 2001 Nobel prize winners Cornell, Wieman and Ketterle, this book surveys the field of BEC studies. Written by experts in the field, it focuses on Bose–Einstein condensation as a universal phenomenon, covering topics such as cold atoms, magnetic and optical condensates in solids, liquid helium and field theory. Summarising general theoretical concepts and the research to date - including novel experimental realisations in previously inaccessible systems and their theoretical interpretation - it is an excellent resource for researchers and students in theoretical and experimental physics who wish to learn of the general themes of BEC in different subfields.
Author : Ulrich Köbler
Publisher : Springer Science & Business Media
Page : 402 pages
File Size : 33,87 MB
Release : 2010-04-29
Category : Technology & Engineering
ISBN : 3642024882
Spin wave theory of magnetism and BCS theory of superconductivity are typical theories of the time before renormalization group (RG) theory. The two theories consider atomistic interactions only and ignore the energy degrees of freedom of the continuous (infinite) solid. Since the pioneering work of Kenneth G. Wilson (Nobel Prize of physics in 1982) we know that the continuous solid is characterized by a particular symmetry: invariance with respect to transformations of the length scale. Associated with this symmetry are particular field particles with characteristic excitation spectra. In diamagnetic solids these are the well known Debye bosons. This book reviews experimental work on solid state physics of the last five decades and shows in a phenomenological way that the dynamics of ordered magnets and conventional superconductors is controlled by the field particles of the infinite solid and not by magnons and Cooper pairs, respectively. In the case of ordered magnets the relevant field particles are called GSW bosons after Goldstone, Salam and Weinberg and in the case of superconductors the relevant field particles are called SC bosons. One can imagine these bosons as magnetic density waves or charge density waves, respectively. Crossover from atomistic exchange interactions to the excitations of the infinite solid occurs because the GSW bosons have generally lower excitation energies than the atomistic magnons. According to the principle of relevance the dynamics is governed by the excitations with the lowest energy. The non relevant atomistic interactions with higher energy are practically unimportant for the dynamics.
Author :
Publisher : Elsevier
Page : 383 pages
File Size : 31,86 MB
Release : 1989-11-28
Category : Science
ISBN : 0080873073
Volume 12 in this distinguished series starts with a chapter on high temperature superconductivity. The chapter is of general interest, giving a historical perspective of the various speculations in the past on the possibility of such superconductors and the possible mechanisms for the superconductivity in the recently discovered materials. Other chapters illustrate the wide range of physics which are more usual low temperature topics, such as spin polarized 3He gas and the Kapitza thermal boundary resistance at mainly millikelvin temperatures. Topics from neighbouring fields such as metal physics and applications of low-temperature physics are dealt with in chapters on charge density waves and multi-SQUID devices and their applications.
Author : Shoji Tanaka
Publisher : Elsevier
Page : 611 pages
File Size : 42,65 MB
Release : 2013-09-17
Category : Science
ISBN : 1483275094
Proceedings of the Yamada Conference XV on Physics and Chemistry of Quasi One-Dimensional Conductors
Author : K. Motizuki
Publisher : Springer Science & Business Media
Page : 309 pages
File Size : 22,51 MB
Release : 2012-12-06
Category : Science
ISBN : 9400945760
The structural phase transition is one of the most fundamental problems in solid state physics. Layered transition-metal dichalcogenides provide us with a most exciting area for the study of structural phase transitions that are associated with the charge density wave (CDW). A large variety of structural phase transitions, such as commensurate and incommensurate transitions, and the physical proper ties related to the formation of a CDW, have been an object of intense study made for many years by methods employing modem microscopic techniques. Rather recently, efforts have been devoted to the theoretical understanding of these experimental results. Thus, McMillan, for example, has developed an elegant phenomenological theory on the basis of the Landau free energy expansion. An extension of McMillan's theory has provided a successful understanding of the successive phase transitions observed in the IT- and 2H-compounds. In addition, a microscopic theory of lattice instability, lattice dynamics, and lattice distortion in the CDW state of the transition-metal dichalcogenides has been developed based on their electronic structures. As a result, the driving force of the CDW formation in the IT- and 2H-compounds has become clear. Furthermore, the effect of lattice fluctuations on the CDW transition and on the anomalous behavior of various physical properties has been made clear microscopically.
Author : J.M. Vail
Publisher : CRC Press
Page : 386 pages
File Size : 39,15 MB
Release : 2003-04-24
Category : Science
ISBN : 9780750307291
Topics in the Theory of Solid Materials provides a clear and rigorous introduction to a wide selection of topics in solid materials, overlapping traditional courses in both condensed matter physics and materials science and engineering. It introduces both the continuum properties of matter, traditionally the realm of materials science courses, and the quantum mechanical properties that are usually more emphasized in solid state physics courses, and integrates them in a manner that will be of use to students of either subject. The book spans a range of basic and more advanced topics, including stress and strain, wave propagation, thermal properties, surface waves, polarons, phonons, point defects, magnetism, and charge density waves. Topics in the Theory of Solid Materials is eminently suitable for graduates and final-year undergraduates in physics, materials science, and engineering, as well as more advanced researchers in academia and industry studying solid materials.
Author : Martin Dressel
Publisher : Cambridge University Press
Page : 490 pages
File Size : 18,65 MB
Release : 2002-01-17
Category : Science
ISBN : 9780521597265
The authors of this book present a thorough discussion of the optical properties of solids, with a focus on electron states and their response to electrodynamic fields. A review of the fundamental aspects of the propagation of electromagnetic fields, and their interaction with condensed matter, is given. This is followed by a discussion of the optical properties of metals, semiconductors, and collective states of solids such as superconductors. Theoretical concepts, measurement techniques and experimental results are covered in three interrelated sections. Well-established, mature fields are discussed (for example, classical metals and semiconductors) together with modern topics at the focus of current interest. The substantial reference list included will also prove to be a valuable resource for those interested in the electronic properties of solids. The book is intended for use by advanced undergraduate and graduate students, and researchers active in the fields of condensed matter physics, materials science and optical engineering.