Introduction to Spectral Theory


Book Description

The intention of this book is to introduce students to active areas of research in mathematical physics in a rather direct way minimizing the use of abstract mathematics. The main features are geometric methods in spectral analysis, exponential decay of eigenfunctions, semi-classical analysis of bound state problems, and semi-classical analysis of resonance. A new geometric point of view along with new techniques are brought out in this book which have both been discovered within the past decade. This book is designed to be used as a textbook, unlike the competitors which are either too fundamental in their approach or are too abstract in nature to be considered as texts. The authors' text fills a gap in the marketplace.




Spectral Theory of Random Schrödinger Operators


Book Description

Since the seminal work of P. Anderson in 1958, localization in disordered systems has been the object of intense investigations. Mathematically speaking, the phenomenon can be described as follows: the self-adjoint operators which are used as Hamiltonians for these systems have a ten dency to have pure point spectrum, especially in low dimension or for large disorder. A lot of effort has been devoted to the mathematical study of the random self-adjoint operators relevant to the theory of localization for disordered systems. It is fair to say that progress has been made and that the un derstanding of the phenomenon has improved. This does not mean that the subject is closed. Indeed, the number of important problems actually solved is not larger than the number of those remaining. Let us mention some of the latter: • A proof of localization at all energies is still missing for two dimen sional systems, though it should be within reachable range. In the case of the two dimensional lattice, this problem has been approached by the investigation of a finite discrete band, but the limiting pro cedure necessary to reach the full two-dimensional lattice has never been controlled. • The smoothness properties of the density of states seem to escape all attempts in dimension larger than one. This problem is particularly serious in the continuous case where one does not even know if it is continuous.




Mathematical Methods in Quantum Mechanics


Book Description

Quantum mechanics and the theory of operators on Hilbert space have been deeply linked since their beginnings in the early twentieth century. States of a quantum system correspond to certain elements of the configuration space and observables correspond to certain operators on the space. This book is a brief, but self-contained, introduction to the mathematical methods of quantum mechanics, with a view towards applications to Schrodinger operators. Part 1 of the book is a concise introduction to the spectral theory of unbounded operators. Only those topics that will be needed for later applications are covered. The spectral theorem is a central topic in this approach and is introduced at an early stage. Part 2 starts with the free Schrodinger equation and computes the free resolvent and time evolution. Position, momentum, and angular momentum are discussed via algebraic methods. Various mathematical methods are developed, which are then used to compute the spectrum of the hydrogen atom. Further topics include the nondegeneracy of the ground state, spectra of atoms, and scattering theory. This book serves as a self-contained introduction to spectral theory of unbounded operators in Hilbert space with full proofs and minimal prerequisites: Only a solid knowledge of advanced calculus and a one-semester introduction to complex analysis are required. In particular, no functional analysis and no Lebesgue integration theory are assumed. It develops the mathematical tools necessary to prove some key results in nonrelativistic quantum mechanics. Mathematical Methods in Quantum Mechanics is intended for beginning graduate students in both mathematics and physics and provides a solid foundation for reading more advanced books and current research literature. It is well suited for self-study and includes numerous exercises (many with hints).




Schrödinger Operators


Book Description

Are you looking for a concise summary of the theory of Schrödinger operators? Here it is. Emphasizing the progress made in the last decade by Lieb, Enss, Witten and others, the three authors don’t just cover general properties, but also detail multiparticle quantum mechanics – including bound states of Coulomb systems and scattering theory. This corrected and extended reprint contains updated references as well as notes on the development in the field over the past twenty years.




Spectrum and Dynamics


Book Description

This volume contains a collection of papers presented at the workshop on Spectrum and Dynamics held at the CRM in April 2008. In recent years. many new exciting connections have been established between the spectral theory of elliptic operators and the theory of dynamical systems. A number of articles in the proceedings highlight these discoveries. The volume features a diversity of topics. Such as quantum chaos, spectral geometry. Semiclassical analysis, number theory and ergodic theory. Apart from the research papers aimed at the experts, this book includes several survey articles accessible to a broad math ematical audience.




Advanced Topics in Quantum Mechanics


Book Description

An advanced quantum mechanics textbook that provides a unique pedagogical introduction to high-level topics in the field.




The Stability of Matter in Quantum Mechanics


Book Description

Description of research on the subject for researchers, and for advanced undergraduate and graduate courses in mathematical physics.




Functional Analysis


Book Description

This comprehensive introduction to functional analysis covers both the abstract theory and applications to spectral theory, the theory of partial differential equations, and quantum mechanics. It starts with the basic results of the subject and progresses towards a treatment of several advanced topics not commonly found in functional analysis textbooks, including Fredholm theory, form methods, boundary value problems, semigroup theory, trace formulas, and a mathematical treatment of states and observables in quantum mechanics. The book is accessible to graduate students with basic knowledge of topology, real and complex analysis, and measure theory. With carefully written out proofs, more than 300 problems, and appendices covering the prerequisites, this self-contained volume can be used as a text for various courses at the graduate level and as a reference text for researchers in the field.




Probability


Book Description

This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.




Algebraic Cycles and Motives: Volume 1


Book Description

This 2007 book is a self-contained account of the subject of algebraic cycles and motives.