Abelian Varieties, Theta Functions and the Fourier Transform


Book Description

Presents a modern treatment of the theory of theta functions in the context of algebraic geometry.




Complex Abelian Varieties


Book Description

Abelian varieties are special examples of projective varieties. As such theycan be described by a set of homogeneous polynomial equations. The theory ofabelian varieties originated in the beginning of the ninetheenth centrury with the work of Abel and Jacobi. The subject of this book is the theory of abelian varieties over the field of complex numbers, and it covers the main results of the theory, both classic and recent, in modern language. It is intended to give a comprehensive introduction to the field, but also to serve as a reference. The focal topics are the projective embeddings of an abelian variety, their equations and geometric properties. Moreover several moduli spaces of abelian varieties with additional structure are constructed. Some special results onJacobians and Prym varieties allow applications to the theory of algebraic curves. The main tools for the proofs are the theta group of a line bundle, introduced by Mumford, and the characteristics, to be associated to any nondegenerate line bundle. They are a direct generalization of the classical notion of characteristics of theta functions.




Degeneration of Abelian Varieties


Book Description

A new and complete treatment of semi-abelian degenerations of abelian varieties, and their application to the construction of arithmetic compactifications of Siegel moduli space, with most of the results being published for the first time. Highlights of the book include a classification of semi-abelian schemes, construction of the toroidal and the minimal compactification over the integers, heights for abelian varieties over number fields, and Eichler integrals in several variables, together with a new approach to Siegel modular forms. A valuable source of reference for researchers and graduate students interested in algebraic geometry, Shimura varieties or diophantine geometry.




Grassmannians, Moduli Spaces and Vector Bundles


Book Description

This collection of cutting-edge articles on vector bundles and related topics originated from a CMI workshop, held in October 2006, that brought together a community indebted to the pioneering work of P. E. Newstead, visiting the United States for the first time since the 1960s. Moduli spaces of vector bundles were then in their infancy, but are now, as demonstrated by this volume, a powerful tool in symplectic geometry, number theory, mathematical physics, and algebraic geometry. In fact, the impetus for this volume was to offer a sample of the vital convergence of techniques and fundamental progress, taking place in moduli spaces at the outset of the twenty-first century. This volume contains contributions by J. E. Andersen and N. L. Gammelgaard (Hitchin's projectively flat connection and Toeplitz operators), M. Aprodu and G. Farkas (moduli spaces), D. Arcara and A. Bertram (stability in higher dimension), L. Jeffrey (intersection cohomology), J. Kamnitzer (Langlands program), M. Lieblich (arithmetic aspects), P. E. Newstead (coherent systems), G. Pareschi and M. Popa (linear series on Abelian varieties), and M. Teixidor i Bigas (bundles over reducible curves). These articles do require a working knowledge of algebraic geometry, symplectic geometry and functional analysis, but should appeal to practitioners in a diversity of fields. No specialization should be necessary to appreciate the contributions, or possibly to be stimulated to work in the various directions opened by these path-blazing ideas; to mention a few, the Langlands program, stability criteria for vector bundles over surfaces and threefolds, linear series over abelian varieties and Brauer groups in relation to arithmetic properties of moduli spaces.




Abelian Varieties and Number Theory


Book Description

This book is a collection of articles on Abelian varieties and number theory dedicated to Gerhard Frey's 75th birthday. It contains original articles by experts in the area of arithmetic and algebraic geometry. The articles cover topics on Abelian varieties and finitely generated Galois groups, ranks of Abelian varieties and Mordell-Lang conjecture, Tate-Shafarevich group and isogeny volcanoes, endomorphisms of superelliptic Jacobians, obstructions to local-global principles over semi-global fields, Drinfeld modular varieties, representations of etale fundamental groups and specialization of algebraic cycles, Deuring's theory of constant reductions, etc. The book will be a valuable resource to graduate students and experts working on Abelian varieties and related areas.




Current Topics in Complex Algebraic Geometry


Book Description

The 1992/93 academic year at the Mathematical Sciences Research Institute was devoted to complex algebraic geometry. This volume collects survey articles that arose from this event, which took place at a time when algebraic geometry was undergoing a major change. The editors of the volume, Herbert Clemens and János Kollár, chaired the organizing committee. This book gives a good idea of the intellectual content of the special year and of the workshops. Its articles represent very well the change of direction and branching out witnessed by algebraic geometry in the last few years.




Complex Abelian Varieties


Book Description

This book explores the theory of abelian varieties over the field of complex numbers, explaining both classic and recent results in modern language. The second edition adds five chapters on recent results including automorphisms and vector bundles on abelian varieties, algebraic cycles and the Hodge conjecture. ". . . far more readable than most . . . it is also much more complete." Olivier Debarre in Mathematical Reviews, 1994.




The Geometry of Riemann Surfaces and Abelian Varieties


Book Description

Most of the papers in this book deal with the theory of Riemann surfaces (moduli problems, automorphisms, etc.), abelian varieties, theta functions, and modular forms. Some of the papers contain surveys on the recent results in the topics of current interest to mathematicians, whereas others contain new research results.







Moduli of Abelian Varieties


Book Description

This is a book aimed at researchers and advanced graduate students in algebraic geometry, interested in learning about a promising direction of research in algebraic geometry. It begins with a generalization of parts of Mumford's theory of the equations defining abelian varieties and moduli spaces. It shows through striking examples how one can use these apparently intractable systems of equations to obtain satisfying insights into the geometry and arithmetic of these varieties. It also introduces the reader to some aspects of the research of the first author into representation theory and invariant theory and their applications to these geometrical questions.