Topological Algebras with Involution


Book Description

This book familiarizes both popular and fundamental notions and techniques from the theory of non-normed topological algebras with involution, demonstrating with examples and basic results the necessity of this perspective. The main body of the book is focussed on the Hilbert-space (bounded) representation theory of topological *-algebras and their topological tensor products, since in our physical world, apart from the majority of the existing unbounded operators, we often meet operators that are forced to be bounded, like in the case of symmetric *-algebras. So, one gets an account of how things behave, when the mathematical structures are far from being algebras endowed with a complete or non-complete algebra norm. In problems related with mathematical physics, such instances are, indeed, quite common.Key features:- Lucid presentation- Smooth in reading- Informative- Illustrated by examples- Familiarizes the reader with the non-normed *-world- Encourages the hesitant- Welcomes new comers.- Well written and lucid presentation.- Informative and illustrated by examples.- Familiarizes the reader with the non-normed *-world.




Topological Algebras


Book Description

This book discusses general topological algebras; space C(T,F) of continuous functions mapping T into F as an algebra only (with pointwise operations); and C(T,F) endowed with compact-open topology as a topological algebra C(T,F,c). It characterizes the maximal ideals and homomorphisms closed maximal ideals and continuous homomorphisms of topological algebras in general and C(T,F,c) in particular. A considerable inroad is made into the properties of C(T,F,c) as a topological vector space. Many of the results about C(T,F,c) serve to illustrate and motivate results about general topological algebras. Attention is restricted to the algebra C(T,R) of real-valued continuous functions and to the pursuit of the maximal ideals and real-valued homomorphisms of such algebras. The chapter presents the correlation of algebraic properties of C(T,F) with purely topological properties of T. The Stone–Cech compactification and the Wallman compactification play an important role in characterizing the maximal ideals of certain topological algebras.




Topological Algebras


Book Description

This volume is addressed to those who wish to apply the methods and results of the theory of topological algebras to a variety of disciplines, even though confronted by particular or less general forms. It may also be of interest to those who wish, from an entirely theoretical point of view, to see how far one can go beyond the classical framework of Banach algebras while still retaining substantial results.The need for such an extension of the standard theory of normed algebras has been apparent since the early days of the theory of topological algebras, most notably the locally convex ones. It is worth noticing that the previous demand was due not only to theoretical reasons, but also to potential concrete applications of the new discipline.




Topological Algebras and Applications


Book Description

The Fifth International Conference on Topological Algebras and Applications was held in Athens, Greece, from June 27th to July 1st of 2005. The main topic of the Conference was general theory of topological algebras and its various applications, with emphasis on the ``non-normed'' case. in addition to the study of the internal structure of non-normed, and even non-locally convex topological algebras, there are applications to other branches of mathematics, such as differential geometry of smooth manifolds, and mathematical physics, such as quantum relativity and quantum cosmology. Operator theory of unbounded operators and related non-normed topological algebras are intensively studied here. Other topics presented in this volume are topological homological algebra, topological algebraic geometry, sheaf theory and $K$-theory.




Operator Theory, Functional Analysis and Applications


Book Description

This book presents 30 articles on the topic areas discussed at the 30th “International Workshop on Operator Theory and its Applications”, held in Lisbon in July 2019. The contributions include both expository essays and original research papers reflecting recent advances in the traditional IWOTA areas and emerging adjacent fields, as well as the applications of Operator Theory and Functional Analysis. The topics range from C*–algebras and Banach *–algebras, Sturm-Liouville theory, integrable systems, dilation theory, frame theory, Toeplitz, Hankel, and singular integral operators, to questions from lattice, group and matrix theories, complex analysis, harmonic analysis, and function spaces. Given its scope, the book is chiefly intended for researchers and graduate students in the areas of Operator Theory, Functional Analysis, their applications and adjacent fields.




Topological Algebras and their Applications


Book Description

Proceedings of the 8th International Conference of Topological Algebras and Their Applications (ICTAA-2014), held on May 26-30, 2014 in Playa de Villas de Mar Beach, dedicated to the memory of Anastasios Mallios (Athens, Greece). This series of conferences started in 1999 in Tartu, Estonia and were subsequently held in Rabat, Moroco (2000), Oulu, Finland (2001), Oaxaca, Mexico (2002), Bedlewo, Poland (2003), Athens, Greece (2005) and Tartu, Estonia (2008 and 2013). The topics of the conference include all areas of mathematics, connected with (preferably general) topological algebras and their applications, including all kinds of topological-algebraic structures as topological linear spaces, topological rings, topological modules, topological groups and semigroups; bornological-algebraic structures such as bornological linear spaces, bornological algebras, bornological groups, bornological rings and modules; algebraic and topological K-theory; topological module bundles, sheaves and others. Contents Some results on spectral properties of unital algebras and on the algebra of linear operators on a unital algebra Descriptions of all closed maximal one-sided ideals in topological algebras On non self-adjoint operators defined by Riesz bases in Hilbert and rigged Hilbert spaces Functional calculus on algebras of operators generated by a self-adjoint operator in Pontryagin space Π1 On Gelfand-Naimark type Theorems for unital abelian complex and real locally C*-, and locally JB-algebras Multipliers and strictly real topological algebras Multipliers in some perfect locally m-pseudo-convex algebras Wedderburn structure theorems for two-sided locally m-convex H*-algebras Homologically best modules in classical and quantized functional analysis Operator Grüss inequality Main embedding theorems for symmetric spaces of measurable functions Mapping class groups are linear Subnormable A-convex algebras Commutative BP*-algebras and Gelfand-Naimark’s theorem Discrete nonclosed subsets in maximally nondiscrete topological groups Faithfully representable topological *-algebras: some spectral properties On continuity of complementors in topological algebras Dominated ergodic theorem for isometries of non-commutative Lp-spaces, 1 p p ≠ 2 Ranks and the approximate n-th root property of C*-algebras Dense ideals in topological algebras: some results and open problems




Generalized B*-Algebras and Applications


Book Description

This book reviews the theory of 'generalized B*-algebras' (GB*-algebras), a class of complete locally convex *-algebras which includes all C*-algebras and some of their extensions. A functional calculus and a spectral theory for GB*-algebras is presented, together with results such as Ogasawara's commutativity condition, Gelfand–Naimark type theorems, a Vidav–Palmer type theorem, an unbounded representation theory, and miscellaneous applications. Numerous contributions to the subject have been made since its initiation by G.R. Allan in 1967, including the notable early work of his student P.G. Dixon. Providing an exposition of existing research in the field, the book aims to make this growing theory as familiar as possible to postgraduate students interested in functional analysis, (unbounded) operator theory and its relationship to mathematical physics. It also addresses researchers interested in extensions of the celebrated theory of C*-algebras.




Hilbert Space Operators in Quantum Physics


Book Description

The new edition of this book detailing the theory of linear-Hilbert space operators and their use in quantum physics contains two new chapters devoted to properties of quantum waveguides and quantum graphs. The bibliography contains 130 new items.




Unbounded Operator Algebras and Representation Theory


Book Description

*-algebras of unbounded operators in Hilbert space, or more generally algebraic systems of unbounded operators, occur in a natural way in unitary representation theory of Lie groups and in the Wightman formulation of quantum field theory. In representation theory they appear as the images of the associated representations of the Lie algebras or of the enveloping algebras on the Garding domain and in quantum field theory they occur as the vector space of field operators or the *-algebra generated by them. Some of the basic tools for the general theory were first introduced and used in these fields. For instance, the notion of the weak (bounded) commutant which plays a fundamental role in thegeneraltheory had already appeared in quantum field theory early in the six ties. Nevertheless, a systematic study of unbounded operator algebras began only at the beginning of the seventies. It was initiated by (in alphabetic order) BORCHERS, LASSNER, POWERS, UHLMANN and VASILIEV. J1'rom the very beginning, and still today, represen tation theory of Lie groups and Lie algebras and quantum field theory have been primary sources of motivation and also of examples. However, the general theory of unbounded operator algebras has also had points of contact with several other disciplines. In particu lar, the theory of locally convex spaces, the theory of von Neumann algebras, distri bution theory, single operator theory, the momcnt problem and its non-commutative generalizations and noncommutative probability theory, all have interacted with our subject.




The Book of Involutions


Book Description