Topological Structures in Ferroic Materials


Book Description

This book provides a state-of-the art overview of a highly interesting emerging research field in solid state physics/nanomaterials science, topological structures in ferroic materials. Topological structures in ferroic materials have received strongly increasing attention in the last few years. Such structures include domain walls, skyrmions and vortices, which can form in ferroelectric, magnetic, ferroelastic or multiferroic materials. These topological structures can have completely different properties from the bulk material they form in. They also can be controlled by external fields (electrical, magnetic, strain) or currents, which makes them interesting from a fundamental research point of view as well as for potential novel nanomaterials applications. To provide a comprehensive overview, international leading researches in these fields contributed review-like chapters about their own work and the work of other researchers to provide a current view of this highly interesting topic.




Topological Structures in Multiferroics - Domain Walls, Skyrmions and Vortices


Book Description

Topological structures in multiferroic materials have recently received considerable attention because of their potential use as nanoscale functional elements. Their reduced size in conjunction with exotic arrangement of the ferroic order parameter and potential order parameter coupling allows for emergent and unexplored phenomena in condensed matter and functional materials systems. This will lead to exciting new fundamental discoveries as well as application concepts that exploit their response to external stimuli such as mechanical strain, electric and magnetic fields. In this review we capture the current development of this rapidly moving field with specific emphasis on key achievements that have cast light on how such topological structures in multiferroic materials systems can be exploited for use in complex oxide nanoelectronics and spintronics.




Multiferroic Materials


Book Description

"a very detailed book on multiferroics that will be useful for PhD students and researchers interested in this emerging field of materials science" —Dr. Wilfrid Prellier, Research Director, CNRS, Caen, France Multiferroics has emerged as one of the hottest topics in solid state physics in this millennium. The coexistence of multiple ferroic/antiferroic properties makes them useful both for fundamental studies and practical applications such as revolutionary new memory technologies and next-generation spintronics devices. This book provides an historical introduction to the field, followed by a summary of recent progress in single-phase multiferroics (type-I and type-II), multiferroic composites (bulk and nano composites), and emerging areas such as domain walls and vortices. Each chapter addresses potential technological implications. There is also a section dedicated to theoretical approaches, both phenomenological and first-principles calculations.




Multiferroics


Book Description

Multiferroics, materials with a coexistence of magnetic and ferroelectric order, provide an efficient route for the control of magnetism by electric fields. The authors cover multiferroic thin-film heterostructures, device architectures and domain/interface effects. They critically discuss achievements as well as limitations and assess opportunities for future applications.




Magnetic Skyrmions and Their Applications


Book Description

Magnetic skyrmions are particle-like objects described by localized solutions of non-linear partial differential equations. Up until a few decades ago, it was believed that magnetic skyrmions only existed in condensed matter as short-term excitations that would quickly collapse into linear singularities. The contrary was proven theoretically in 1989 and evidentially in 2009. It is now known that skyrmions can exist as long-living metastable configurations in low-symmetry condensed matter systems with broken mirror symmetry, increasing the potential applications possible. Magnetic Skyrmions and their Applications delves into the fundamental principles and most recent research and developments surrounding these unique magnetic particles. Despite achievements in the synthesis of systems stabilizing chiral magnetic skyrmions and the variety of experimental investigations and numerical calculations, there have not been many summaries of the fundamental physical principles governing magnetic skyrmions or integrating those concepts with methods of detection, characterization and potential applications. Magnetic Skyrmions and their Applications delivers a coherent, state-of-the-art discussion on the current knowledge and potential applications of magnetic skyrmions in magnetic materials and device applications. First the book reviews key concepts such as topology, magnetism and materials for magnetic skyrmions. Then, charactization methods, physical mechanisms, and emerging applications are discussed. Covers background knowledge and details the basic principles of magnetic skyrmions, including materials, characterization, statics and dynamics Reviews materials for skyrmion stabilization including bulk materials and interface-dominated multilayer materials Describes both well-known and unconventional applications of magnetic skyrmions, such as memristors and reservoir computing




Phase-field Simulations of Topological Structures and Topological Phase Transitions in Ferroelectric Oxide Heterostructures


Book Description

Ferroelectrics are materials that exhibit spontaneous electric polarization which can be switched between energy-degenerated states by external stimuli (e.g., mechanical force and electric field) that exceeds a critical value. They have wide potential applications in memories, capacitors, piezoelectric and pyroelectric sensors, and nanomechanical systems. Topological structures and topological phase transitions have been introduced to the condensed matter physics in the past few decades and have attracted broad attentions in various disciplines due to the rich physical insights and broad potential applications. Ferromagnetic topological structures such as vortex and skyrmion are known to be stabilized by the antisymmetric chiral interaction (e.g., Dzyaloshinskii-Moriya interaction). Without such interaction, ferroelectric topological structures (i.e., vortex, flux-closure, skyrmions, and merons) have been studied only recently with other designing strategies, such as reducing the dimension of the ferroelectrics. The overarching goal of this dissertation is to investigate the topological structures in ferroelectric oxide perovskites as well as the topological phase transitions under external applied forces.Pb(Zr,Ti)O3 (PZT) with morphotropic phase boundary is widely explored for high piezoelectric and dielectric properties. The domain structure of PZT tetragonal/rhombohedral (T/R) bilayer is investigated. Strong interfacial coupling is shown, with large polarization rotation to a lower symmetry phase near the T/R interface. Interlayer domain growth can also be captured, with T-domains in the R layer and R-domains in the T layer. For thin PZT bilayer with 5nm of T-layer and 20 nm of R-layer, the a1/a2 twin domain structure is formed in the top T layer, which could be fully switched to R domains under applied bias. While a unique flux-closure pattern is observed both theoretically and experimentally in the thick bilayer film with 50 nm of thickness for both T and R layers. It is revealed that the bilayer system could facilitate the motion of the ferroelastic a-domain in the top T-layer since the a-domain is not directly embedded in the substrate with high density of defects which can pin the domain wall. Excellent dielectric and piezoelectric responses are demonstrated due to the large polarization rotation and the highly mobile domain walls in both the thick and thin bilayer systems.The long-range ordered polar vortex array is observed in the (PbTiO3)n/(SrTiO3)n (PTOn/STOn with n=10~20) superlattices with combined experimental and theoretical studies. Phase-field simulations reveal the three-dimensional textures of the polar vortex arrays. The neighboring vortices rotate in the opposite directions, which extended into tube-like vortex lines perpendicular to the vortex plane. The thickness-dependent phase diagram is predicted and verified by experimental observations. The energetics (the contributions from elastic, electrostatic, gradient and Landau chemical energies) accompanying the phase transitions are analyzed in details. The dominating depolarization energy at short periodicity (n10) favors a1/ a2 twin domain, while the large elastic relaxation and Landau energy reduction at large periodicity (n20) leads to the formation of flux-closure domain with both 90o a/c domain walls and 180o c+/c- domain walls, counterbalancing of the individual energies at intermediate periodicities (n=10~20) gives rise to the formation of exotic vortex structure with continuous polarization rotation surrounding a singularity-like vortex core. Analytical calculations are performed, showing that the stability of the polar vortex structure is directly related to the length of Pi times bulk domain wall width, where vortex structure can be expected when the geometric length scale of the ferroelectrics is close to this value. The role of insulating STO is further revealed, which shows that a rich phase diagram can be formed by simply tuning the thickness of this layer. Wave-like polar spiral phase is simulated by substituting part of the PTO with BiFeO3 (BFO) in the PTO/STO superlattice (i.e., in a (PTO)4/(BFO)4/(PTO)4/(STO)12 tricolor system) which has demonstrate ordered polar vortex lattice. This spiral phase is made up of semi-vortex cores that are floating up-down in the ferroelectric PTO layers, giving rise to a net in-plane polarization. An increase of Curie temperature and topological to regular domain transition temperature (over 200 K) is observed, due to the higher Curie temperature and larger spontaneous polarization in BFO layers. This unidirectional spiral state can be reversibly switched by experimentally feasible in-plane field, which evolves into a metastable vortex structure in-between two spiral phases with opposite in-plane directions.The switching of polar vortex lattice under capacitor field for the (PTO)16/(STO)16 superlattice is studied, which reveals the existence of polar skyrmion state at intermediate applied bias. This is akin to the Rayleigh-Plateau instability in the fluid mechanics. A similar phenomenon is experimentally observed in the ferromagnetic system recently. The skyrmion-like structure will shrink with the further increasing of applied bias after saturation and eventually disappear given sufficiently large bias, leading to the formation of ferroelectric/ferroelastic twin domains with distinct 90o domain walls. Dimensionality cross-over is demonstrated, where a 1-D vortex core structure can be switched to the 2-D domain wall by the joint of two vortices with opposite curls. Electric-field phase diagram is plotted, showing a wide electric field region which could stabilize the metastable polar skyrmion state. This could serve as a road map for the experimental observation of the ferroelectric skyrmion state.







Skyrmions


Book Description

The skyrmion, a recently discovered type of domain structure, has interesting topological structure and properties which promise to have a major impact in physics and materials science, thereby leading to development of exciting new electronic and magnetic devices. This book showcases the state of the art in this rapidly growing area, highlighting its importance for the fundamental understanding of magnetism and transport as well as technological applications. The contents begin with a comprehensive look at topological structures and magnetic and transport properties. From there, the chapters turn to experimental studies, including materials and observations, and emerging applications.




Ferroelectric Domain Walls


Book Description

Using the nano metric resolution of atomic force microscopy techniques, this work explores the rich fundamental physics and novel functionalities of domain walls in ferroelectric materials, the nano scale interfaces separating regions of differently oriented spontaneous polarization. Due to the local symmetry-breaking caused by the change in polarization, domain walls are found to possess an unexpected lateral piezoelectric response, even when this is symmetry-forbidden in the parent material. This has interesting potential applications in electromechanical devices based on ferroelectric domain patterning. Moreover, electrical conduction is shown to arise at domain walls in otherwise insulating lead zirconate titanate, the first such observation outside of multiferroic bismuth ferrite, due to the tendency of the walls to localize defects. The role of defects is then explored in the theoretical framework of disordered elastic interfaces possessing a characteristic roughness scaling and complex dynamic response. It is shown that the heterogeneous disorder landscape in ferroelectric thin films leads to a breakdown of the usual self-affine roughness, possibly related to strong pinning at individual defects. Finally, the roles of varying environmental conditions and defect densities in domain switching are explored and shown to be adequately modelled as a competition between screening effects and pinning.




Domain Walls


Book Description

Technological evolution and revolution are both driven by the discovery of new functionalities, new materials and the design of yet smaller, faster, and more energy-efficient components. Progress is being made at a breathtaking pace, stimulated by the rapidly growing demand for more powerful and readily available information technology. High-speed internet and data-streaming, home automation, tablets and smartphones are now "necessities" for our everyday lives. Consumer expectations for progressively more data storage and exchange appear to be insatiable. Oxide electronics is a promising and relatively new field that has the potential to trigger major advances in information technology. Oxide interfaces are particularly intriguing. Here, low local symmetry combined with an increased susceptibility to external fields leads to unusual physical properties distinct from those of the homogeneous bulk. In this context, ferroic domain walls have attracted recent attention as a completely new type of oxide interface. In addition to their functional properties, such walls are spatially mobile and can be created, moved, and erased on demand. This unique degree of flexibility enables domain walls to take an active role in future devices and hold a great potential as multifunctional 2D systems for nanoelectronics. With domain walls as reconfigurable electronic 2D components, a new generation of adaptive nano-technology and flexible circuitry becomes possible, that can be altered and upgraded throughout the lifetime of the device. Thus, what started out as fundamental research, at the limit of accessibility, is finally maturing into a promising concept for next-generation technology.