Graph Theory and Its Applications, Second Edition


Book Description

Already an international bestseller, with the release of this greatly enhanced second edition, Graph Theory and Its Applications is now an even better choice as a textbook for a variety of courses -- a textbook that will continue to serve your students as a reference for years to come. The superior explanations, broad coverage, and abundance of illustrations and exercises that positioned this as the premier graph theory text remain, but are now augmented by a broad range of improvements. Nearly 200 pages have been added for this edition, including nine new sections and hundreds of new exercises, mostly non-routine. What else is new? New chapters on measurement and analytic graph theory Supplementary exercises in each chapter - ideal for reinforcing, reviewing, and testing. Solutions and hints, often illustrated with figures, to selected exercises - nearly 50 pages worth Reorganization and extensive revisions in more than half of the existing chapters for smoother flow of the exposition Foreshadowing - the first three chapters now preview a number of concepts, mostly via the exercises, to pique the interest of reader Gross and Yellen take a comprehensive approach to graph theory that integrates careful exposition of classical developments with emerging methods, models, and practical needs. Their unparalleled treatment provides a text ideal for a two-semester course and a variety of one-semester classes, from an introductory one-semester course to courses slanted toward classical graph theory, operations research, data structures and algorithms, or algebra and topology.




Topics in Topological Graph Theory


Book Description

The use of topological ideas to explore various aspects of graph theory, and vice versa, is a fruitful area of research. There are links with other areas of mathematics, such as design theory and geometry, and increasingly with such areas as computer networks where symmetry is an important feature. Other books cover portions of the material here, but there are no other books with such a wide scope. This book contains fifteen expository chapters written by acknowledged international experts in the field. Their well-written contributions have been carefully edited to enhance readability and to standardize the chapter structure, terminology and notation throughout the book. To help the reader, there is an extensive introductory chapter that covers the basic background material in graph theory and the topology of surfaces. Each chapter concludes with an extensive list of references.




The Foundations of Topological Graph Theory


Book Description

This is not a traditional work on topological graph theory. No current graph or voltage graph adorns its pages. Its readers will not compute the genus (orientable or non-orientable) of a single non-planar graph. Their muscles will not flex under the strain of lifting walks from base graphs to derived graphs. What is it, then? It is an attempt to place topological graph theory on a purely combinatorial yet rigorous footing. The vehicle chosen for this purpose is the con cept of a 3-graph, which is a combinatorial generalisation of an imbedding. These properly edge-coloured cubic graphs are used to classify surfaces, to generalise the Jordan curve theorem, and to prove Mac Lane's characterisation of planar graphs. Thus they playa central role in this book, but it is not being suggested that they are necessarily the most effective tool in areas of topological graph theory not dealt with in this volume. Fruitful though 3-graphs have been for our investigations, other jewels must be examined with a different lens. The sole requirement for understanding the logical development in this book is some elementary knowledge of vector spaces over the field Z2 of residue classes modulo 2. Groups are occasionally mentioned, but no expertise in group theory is required. The treatment will be appreciated best, however, by readers acquainted with topology. A modicum of topology is required in order to comprehend much of the motivation we supply for some of the concepts introduced.




Topological Theory of Graphs


Book Description

This book presents a topological approach to combinatorial configurations, in particular graphs, by introducing a new pair of homology and cohomology via polyhedra. On this basis, a number of problems are solved using a new approach, such as the embeddability of a graph on a surface (orientable and nonorientable) with given genus, the Gauss crossing conjecture, the graphicness and cographicness of a matroid, and so forth. Notably, the specific case of embeddability on a surface of genus zero leads to a number of corollaries, including the theorems of Lefschetz (on double coverings), of MacLane (on cycle bases), and of Whitney (on duality) for planarity. Relevant problems include the Jordan axiom in polyhedral forms, efficient methods for extremality and for recognizing a variety of embeddings (including rectilinear layouts in VLSI), and pan-polynomials, including those of Jones, Kauffman (on knots), and Tutte (on graphs), among others. Contents Preliminaries Polyhedra Surfaces Homology on Polyhedra Polyhedra on the Sphere Automorphisms of a Polyhedron Gauss Crossing Sequences Cohomology on Graphs Embeddability on Surfaces Embeddings on Sphere Orthogonality on Surfaces Net Embeddings Extremality on Surfaces Matroidal Graphicness Knot Polynomials




Applications of Algebraic Topology


Book Description

This monograph is based, in part, upon lectures given in the Princeton School of Engineering and Applied Science. It presupposes mainly an elementary knowledge of linear algebra and of topology. In topology the limit is dimension two mainly in the latter chapters and questions of topological invariance are carefully avoided. From the technical viewpoint graphs is our only requirement. However, later, questions notably related to Kuratowski's classical theorem have demanded an easily provided treatment of 2-complexes and surfaces. January 1972 Solomon Lefschetz 4 INTRODUCTION The study of electrical networks rests upon preliminary theory of graphs. In the literature this theory has always been dealt with by special ad hoc methods. My purpose here is to show that actually this theory is nothing else than the first chapter of classical algebraic topology and may be very advantageously treated as such by the well known methods of that science. Part I of this volume covers the following ground: The first two chapters present, mainly in outline, the needed basic elements of linear algebra. In this part duality is dealt with somewhat more extensively. In Chapter III the merest elements of general topology are discussed. Graph theory proper is covered in Chapters IV and v, first structurally and then as algebra. Chapter VI discusses the applications to networks. In Chapters VII and VIII the elements of the theory of 2-dimensional complexes and surfaces are presented.




Topological Graph Theory


Book Description

Iintroductory treatment emphasizes graph imbedding but also covers connections between topological graph theory and other areas of mathematics. Authors explore the role of voltage graphs in the derivation of genus formulas, explain the Ringel-Youngs theorem, and examine the genus of a group, including imbeddings of Cayley graphs. Many figures. 1987 edition.




Graphs on Surfaces


Book Description

Graph theory is one of the fastest growing branches of mathematics. Until recently, it was regarded as a branch of combinatorics and was best known by the famous four-color theorem stating that any map can be colored using only four colors such that no two bordering countries have the same color. Now graph theory is an area of its own with many deep results and beautiful open problems. Graph theory has numerous applications in almost every field of science and has attracted new interest because of its relevance to such technological problems as computer and telephone networking and, of course, the internet. In this new book in the Johns Hopkins Studies in the Mathematical Science series, Bojan Mohar and Carsten Thomassen look at a relatively new area of graph theory: that associated with curved surfaces. Graphs on surfaces form a natural link between discrete and continuous mathematics. The book provides a rigorous and concise introduction to graphs on surfaces and surveys some of the recent developments in this area. Among the basic results discussed are Kuratowski's theorem and other planarity criteria, the Jordan Curve Theorem and some of its extensions, the classification of surfaces, and the Heffter-Edmonds-Ringel rotation principle, which makes it possible to treat graphs on surfaces in a purely combinatorial way. The genus of a graph, contractability of cycles, edge-width, and face-width are treated purely combinatorially, and several results related to these concepts are included. The extension by Robertson and Seymour of Kuratowski's theorem to higher surfaces is discussed in detail, and a shorter proof is presented. The book concludes with a survey of recent developments on coloring graphs on surfaces.




Random Walks on Infinite Graphs and Groups


Book Description

The main theme of this book is the interplay between the behaviour of a class of stochastic processes (random walks) and discrete structure theory. The author considers Markov chains whose state space is equipped with the structure of an infinite, locally finite graph, or as a particular case, of a finitely generated group. The transition probabilities are assumed to be adapted to the underlying structure in some way that must be specified precisely in each case. From the probabilistic viewpoint, the question is what impact the particular type of structure has on various aspects of the behaviour of the random walk. Vice-versa, random walks may also be seen as useful tools for classifying, or at least describing the structure of graphs and groups. Links with spectral theory and discrete potential theory are also discussed. This book will be essential reading for all researchers working in stochastic process and related topics.




Thirty Essays on Geometric Graph Theory


Book Description

In many applications of graph theory, graphs are regarded as geometric objects drawn in the plane or in some other surface. The traditional methods of "abstract" graph theory are often incapable of providing satisfactory answers to questions arising in such applications. In the past couple of decades, many powerful new combinatorial and topological techniques have been developed to tackle these problems. Today geometric graph theory is a burgeoning field with many striking results and appealing open questions. This contributed volume contains thirty original survey and research papers on important recent developments in geometric graph theory. The contributions were thoroughly reviewed and written by excellent researchers in this field.




When Topology Meets Chemistry


Book Description

The applications of topological techniques for understanding molecular structures have become increasingly important over the past thirty years. In this topology text, the reader will learn about knot theory, 3-dimensional manifolds, and the topology of embedded graphs, while learning the role these play in understanding molecular structures. Most of the results that are described in the text are motivated by questions asked by chemists or molecular biologists, though the results themselves often go beyond answering the original question asked. There is no specific mathematical or chemical prerequisite; all the relevant background is provided. The text is enhanced by nearly 200 illustrations and more than 100 exercises. Reading this fascinating book, undergraduate mathematics students can escape the world of pure abstract theory and enter that of real molecules, while chemists and biologists will find simple, clear but rigorous definitions of mathematical concepts they handle intuitively in their work.