Tortuosity and Microstructure Effects in Porous Media


Book Description

This open access book presents a thorough look at tortuosity and microstructure effects in porous materials. The book delivers a comprehensive review of the subject, summarizing all key results in the field with respect to the underlying theories, empirical data available in the literature, modern methodologies and calculation approaches, and quantitative relationships between microscopic and macroscopic properties. It thoroughly discusses up to 20 different types of tortuosity and introduces a new classification scheme and nomenclature based on direct geometric tortuosities, indirect physics-based tortuosities, and mixed tortuosities (geometric and physics-based). The book also covers recent progress in 3D imaging and image modeling for studying novel aspects of tortuosity and associated transport properties in materials, while providing a comprehensive list of available software packages for practitioners in the community. This book is a must-read for researchers and students in materials science and engineering interested in a deeper understanding of microstructure–property relationships in porous materials. For energy materials in particular, such as lithium-ion batteries, tortuosity is a key microstructural parameter that can greatly impact long-term material performance. Thus, the information laid out in this book will also greatly benefit researchers interested in computational modeling and design of next-generation materials, especially those for sustainability and energy applications.







Transport Phenomena


Book Description

Part II covers applications in greater detail. The three transport phenomena--heat, mass, and momentum transfer--are treated in depth through simultaneous (or parallel) developments.




Acoustics of Materials


Book Description

This book deals with acoustic wave interaction with different materials, such as porous materials, crystals, biological tissues, nanofibers, etc. Physical phenomena and mathematical models are described, numerical simulations and theoretical predictions are compared to experimental data, and the results are discussed by evoking new trends and perspectives. Several approaches and applications are developed, including non-linear elasticity, propagation, diffusion, soundscape, environmental acoustics, mechanotransduction, infrasound, acoustic beam, microwave sensors, and insulation. The book is composed of three sections: Control of Sound - Absorbing Materials for Damping of Sound, Sound Propagation in Complex/Porous materials and Nondestructive Testing (NDT), Non Linearity, Leakage.







Equilibrium and Transfer in Porous Media 2


Book Description

A porous medium is composed of a solid matrix and its geometrical complement: the pore space. This pore space can be occupied by one or more fluids. The understanding of transport phenomena in porous media is a challenging intellectual task. This book provides a detailed analysis of the aspects required for the understanding of many experimental techniques in the field of porous media transport phenomena. It is aimed at students or engineers who may not be looking specifically to become theoreticians in porous media, but wish to integrate knowledge of porous media with their previous scientific culture, or who may have encountered them when dealing with a technological problem. While avoiding the details of the more mathematical and abstract developments of the theories of macroscopization, the author gives as accurate and rigorous an idea as possible of the methods used to establish the major laws of macroscopic behavior in porous media. He also illustrates the constitutive laws and equations by demonstrating some of their classical applications. Priority is to put forward the constitutive laws in concrete circumstances without going into technical detail. This second volume in the three-volume series focuses on transport and transfer from homogeneous phases to porous media, and isothermal transport in the pore space.




Solid-State Ionic Devices 5


Book Description

Solid-state electrochemical devices, such as batteries, fuel cells, membranes, and sensors, are becoming pervasive in our technologically driven lifestyles. The development of these devices involves common research themes such as ion transport, interfacial phenomena, and device design and performance, regardless of the class of materials or whether the solid state is amorphous or crystalline. However, results of recent research in this field tend to be presented in symposia separated along the lines of particular solidstate materials disciplines rather than by phenomena controlling device performance. The papers in this issue of ECS Transactions were presented at the fifth of a series in international symposia "Solid-State Ionic Devices V", at the 212th Electrochemical Society Meeting, in Washington DC, October 7-12, 2007. The intent of the symposia was to provide a forum for current advances in ionically conducting materials and devices that is organized along phenomenological lines, rather than by specific material discipline. The papers in this issue range from the fundamentals of ionic and mixed ionic-electronic transport to device performance and are in keeping with that intent.







Propagation of Sound in Porous Media


Book Description

This book has grown out of the research activities of the author in the fields of sound propagation in porous media and modelling of acoustic materials. It is assumed that the reader has a background of advanced calculus, including an introduction to differential equations, complex variables and matrix algebra. A prior exposure to theory of elasticity would be advantageous. Chapters 1-3 deal with sound propagation of plane waves in solids and fluids, and the topics of acoustic impedance and reflection coefficient are given a large emphasis. The topic of flow resistivity is presented in Chapter 2. Chapter 4 deals with sound propagation in porous materials having cylindrical pores. The topics of effective density, and of tortuosity, are presented. The thermal exchanges between the frame and the fluid, and the behaviour of the bulk modulus of the fluid, are described in this simple context. Chapter 5 is concerned with sound propagation in other porous materials, and the recent notions of characteristic dimensions, which describe thermal exchanges and the viscous forces at high frequencies, are introduced. In Chapter 6, the case of porous media having an elastic frame is considered in the context of Biot theory, where new topics described in Chapter 5 have been included.




Introduction to Modeling of Transport Phenomena in Porous Media


Book Description

The main purpose of this book is to provide the theoretical background to engineers and scientists engaged in modeling transport phenomena in porous media, in connection with various engineering projects, and to serve as a text for senior and graduate courses on transport phenomena in porous media. Such courses are taught in various disciplines, e. g. , civil engineering, chemical engineering, reservoir engineering, agricultural engineering and soil science. In these disciplines, problems are encountered in which various extensive quantities, e. g. , mass and heat, are transported through a porous material domain. Often the porous material contains several fluid phases, and the various extensive quantities are transported simultaneously throughout the multiphase system. In all these disciplines, management decisions related to a system's development and its operation have to be made. To do so, the 'manager', or the planner, needs a tool that will enable him to forecast the response of the system to the implementation of proposed management schemes. This forecast takes the form of spatial and temporal distributions of variables that describe the future state of the considered system. Pressure, stress, strain, density, velocity, solute concentration, temperature, etc. , for each phase in the system, and sometime for a component of a phase, may serve as examples of state variables. The tool that enables the required predictions is the model. A model may be defined as a simplified version of the real (porous medium) system that approximately simulates the excitation-response relations of the latter.