Transforms in Signals and Systems


Book Description

This title is an introduction to transforms in signals and systems




Signals, Systems, and Transforms


Book Description

This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. For sophomore/junior-level signals and systems courses in Electrical and Computer Engineering departments. Signals, Systems, and Transforms, Fourth Edition is ideal for electrical and computer engineers. The text provides a clear, comprehensive presentation of both the theory and applications in signals, systems, and transforms. It presents the mathematical background of signals and systems, including the Fourier transform, the Fourier series, the Laplace transform, the discrete-time and the discrete Fourier transforms, and the z-transform. The text integrates MATLAB examples into the presentation of signal and system theory and applications.




Signals, Systems, Transforms, and Digital Signal Processing with MATLAB


Book Description

Signals, Systems, Transforms, and Digital Signal Processing with MATLAB® has as its principal objective simplification without compromise of rigor. Graphics, called by the author, "the language of scientists and engineers", physical interpretation of subtle mathematical concepts, and a gradual transition from basic to more advanced topics are meant to be among the important contributions of this book. After illustrating the analysis of a function through a step-by-step addition of harmonics, the book deals with Fourier and Laplace transforms. It then covers discrete time signals and systems, the z-transform, continuous- and discrete-time filters, active and passive filters, lattice filters, and continuous- and discrete-time state space models. The author goes on to discuss the Fourier transform of sequences, the discrete Fourier transform, and the fast Fourier transform, followed by Fourier-, Laplace, and z-related transforms, including Walsh–Hadamard, generalized Walsh, Hilbert, discrete cosine, Hartley, Hankel, Mellin, fractional Fourier, and wavelet. He also surveys the architecture and design of digital signal processors, computer architecture, logic design of sequential circuits, and random signals. He concludes with simplifying and demystifying the vital subject of distribution theory. Drawing on much of the author’s own research work, this book expands the domains of existence of the most important transforms and thus opens the door to a new world of applications using novel, powerful mathematical tools.




Signals and Transforms in Linear Systems Analysis


Book Description

Signals and Transforms in Linear Systems Analysis covers the subject of signals and transforms, particularly in the context of linear systems theory. Chapter 2 provides the theoretical background for the remainder of the text. Chapter 3 treats Fourier series and integrals. Particular attention is paid to convergence properties at step discontinuities. This includes the Gibbs phenomenon and its amelioration via the Fejer summation techniques. Special topics include modulation and analytic signal representation, Fourier transforms and analytic function theory, time-frequency analysis and frequency dispersion. Fundamentals of linear system theory for LTI analogue systems, with a brief account of time-varying systems, are covered in Chapter 4 . Discrete systems are covered in Chapters 6 and 7. The Laplace transform treatment in Chapter 5 relies heavily on analytic function theory as does Chapter 8 on Z -transforms. The necessary background on complex variables is provided in Appendix A. This book is intended to serve as a text on signals and transforms for a first year one semester graduate course, primarily for electrical engineers.




Signals & System Analysis


Book Description

The book is written for an undergraduate course on the Signals and Systems. It provides comprehensive explanation of continuous time signals and systems , analogous systems, Fourier transform, Laplace transform, state variable analysis and z-transform analysis of systems. The book starts with the various types of signals and operations on signals. It explains the classification of continuous time signals and systems. Then it includes the discussion of analogous systems. The book provides detailed discussion of Fourier transform representation, properties of Fourier transform and its applications to network analysis. The book also covers the Laplace transform, its properties and network analysis using Laplace transform with and without initial conditions. The book provides the detailed explanation of modern approach of system analysis called the state variable analysis. It includes various methods of state space representation of systems, finding the state transition matrix and solution of state equation. The discussion of network topology is also included in the book. The chapter on z-transform includes the properties of ROC, properties of z-transform, inverse z-transform, z-transform analysis of LTI systems and pulse transfer function. The state space representation of discrete systems is also incorporated in the book. The book uses plain, simple and lucid language to explain each topic. The book provides the logical method of explaining the various complicated topics and stepwise methods to make the understanding easy. The variety of solved examples is the feature of this book. The book explains the philosophy of the subject which makes the understanding of the concepts very clear and makes the subject more interesting.




Signals, Systems, and Transforms


Book Description

Provides a treatment of signals and systems, with Fourier, Laplace and z transforms. This text is intended for an introductory course in the theory of signals and linear systems. It presents the basic concepts and analytical tools in an organized format. It aims to give the instructor flexibility, while choosing sequential or integrated coverage.







Signals and Systems For Dummies


Book Description

Getting mixed signals in your signals and systems course? The concepts covered in a typical signals and systems course are often considered by engineering students to be some of the most difficult to master. Thankfully, Signals & Systems For Dummies is your intuitive guide to this tricky course, walking you step-by-step through some of the more complex theories and mathematical formulas in a way that is easy to understand. From Laplace Transforms to Fourier Analyses, Signals & Systems For Dummies explains in plain English the difficult concepts that can trip you up. Perfect as a study aid or to complement your classroom texts, this friendly, hands-on guide makes it easy to figure out the fundamentals of signal and system analysis. Serves as a useful tool for electrical and computer engineering students looking to grasp signal and system analysis Provides helpful explanations of complex concepts and techniques related to signals and systems Includes worked-through examples of real-world applications using Python, an open-source software tool, as well as a custom function module written for the book Brings you up-to-speed on the concepts and formulas you need to know Signals & Systems For Dummies is your ticket to scoring high in your introductory signals and systems course.




SIGNALS AND SYSTEMS


Book Description

This comprehensive text on control systems is designed for undergraduate students pursuing courses in electronics and communication engineering, electrical and electronics engineering, telecommunication engineering, electronics and instrumentation engineering, mechanical engineering, and biomedical engineering. Appropriate for self-study, the book will also be useful for AMIE and IETE students. Written in a student-friendly readable manner, the book explains the basic fundamentals and concepts of control systems in a clearly understandable form. It is a balanced survey of theory aimed to provide the students with an in-depth insight into system behaviour and control of continuous-time control systems. All the solved and unsolved problems in this book are classroom tested, designed to illustrate the topics in a clear and thorough way. KEY FEATURES : Includes several fully worked-out examples to help students master the concepts involved. Provides short questions with answers at the end of each chapter to help students prepare for exams confidently. Offers fill in the blanks and objective type questions with answers at the end of each chapter to quiz students on key learning points. Gives chapter-end review questions and problems to assist students in reinforcing their knowledge.




Orthogonal Transforms for Digital Signal Processing


Book Description

This book is intended for those wishing to acquire a working knowledge of orthogonal transforms in the area of digital signal processing. The authors hope that their introduction will enhance the opportunities for interdiscipli nary work in this field. The book consists of ten chapters. The first seven chapters are devoted to the study of the background, motivation and development of orthogonal transforms, the prerequisites for which are a basic knowledge of Fourier series transform (e.g., via a course in differential equations) and matrix al gebra. The last three chapters are relatively specialized in that they are di rected toward certain applications of orthogonal transforms in digital signal processing. As such, a knowlegde of discrete probability theory is an essential additional prerequisite. A basic knowledge of communication theory would be helpful, although not essential. Much of the material presented here has evolved from graduate level courses offered by the Departments of Electrical Engineering at Kansas State University and the University of Texas at Arlington, during the past five years. With advanced graduate students, all the material was covered in one semester. In the case of first year graduate students, the material in the first seven chapters was covered in one semester. This was followed by a prob lems project-oriented course directed toward specific applications, using the material in the last three chapters as a basis.