Ultra-Wideband Short-Pulse Electromagnetics 4


Book Description

Generation of High-Power Subnanosecond Pulses.- Fundamental Physical Considerations for Ultrafast Spark Gap Switching.- Novel source of Powerful Subnanosecond Microwave Pulses Based on Superradiance.- Demonstration of Sub-Millimeter Radiation Generation from Static Field by a Superluminous Ionization front in Semiconductor Capacitor Array.- About Mechanism of Wideband Microwave Radiation at Explosion of Condensed High Explosives.- Calorimetric Spectrometer for Measuring Single Microwave Pulses in Relativistic Microwave Electronics Devices.- Universal Sensor Using Electro-Optic Sensing Principl.




Ultra-Wideband Short-Pulse Electromagnetics 8


Book Description

The purpose of the Ultra-Wideband Short-Pulse Electromagnetics Conference series is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation and scattering from and coupling to targets of interest. This Conference series reports on developments in supporting mathematical and numerical methods and presents current and potential future applications of the technology. Ultra-Wideband Short-Pulse Electromagnetics 8 is based on the American Electromagnetics 2006 conference held from June 3-7 in Albuquerque, New Mexico. Topical areas covered in this volume include pulse radiation and measurement, scattering theory, target detection and identification, antennas, signal processing, and communications.




Ultra-Wideband, Short-Pulse Electromagnetics 5


Book Description

The fifth Conference on Ultra-Wideband Short-Pulse Electromagnetics was held in Scotland from 30 May to 2 June 2000 at the Edinburgh International Conference Centre. It formed part of the EUROEM 2000 International Conference under the chairmanship of David Parkes (DERA, Malvern) and Paul Smith (University of Dundee). It continued the series of international conferences that were held first at the Polytechnic University, Brooklyn, New York in 1992 and 1994, then in Albuquerque, New Mexico in 1996 (as part of AMEREM ’96) and more recently in Tel-Aviv, Israel in 1998 (as part of EUROEM ’98). The purpose of these meetings is to focus on advanced technologies for the generation, radiation and detection of ultra-wideband short pulse signals, taking into account their propagation, scattering from and coupling to targets of interest; to report on developments in supporting mathematical and numerical methods; and to describe current and potential future applications of the technology.




Design and Analysis of High-Power Electromagnetic Impulse Radiator


Book Description

Pulses with sub-nanoseconds / nanoseconds rise time are used in high power radar, sterilization, testing the effect on electronic systems, food irradiation, electromagnetic welding, forming, wastewater processing, defence, medical electronics, etc. There are various methods for obtaining the mentioned low rise time pulses. In this book, a Marx generator, peaking capacitor and peaking switch are used to obtain high amplitude low rise time pulse. A radiating antenna is then connected to the output of peaking stage. Such a system is known as the high-power electromagnetic (EM) impulse radiator. Two such EM radiators were mathematically analysed, simulated, designed, fabricated and the experiments have been conducted in this book.




Ultra-Wideband, Short-Pulse Electromagnetics


Book Description

In 1945, Dr. Ernst Weber founded, and was the first Director of, the Microwave Research Institute (MRI) at POLYTECHNIC UNIVERSITY (at that time named the Polytechnic Institute of Brooklyn). MRI gained world-wide recognition in the 50's and 60's for its research in electromagnetic theory, antennas and radiation, network theory and microwave networks, microwave components and devices. It was also known through its series of topical symposia and the widely distributed hard bound MRI Symposium Proceedings. Rededicated as the Weber Research Institute (WRI) in 1986, the research focus today is on such areas as electromagnetic propagation and antennas, ultra broadband electromagnetics, pulse power, acoustics, gaseous electronics, plasma physics, solid state materials, quantum electronics, electromagnetic launchers, and networks. Following the MRI tradition, WRI has launched its own series of in-depth topical conferences with published proceedings. The first conference was held in October, 1990 and was entitled Directions in Electromagnetic Wave Modeling. The proceedings of the conference were published under that title by Plenum Press. This volume constitutes the Proceedings of the second WRI International Conference dealing with Ultra·Wideband Short·Pulse Electromagnetics.




Introduction to Ultra-Wideband Radar Systems


Book Description

This introductory reference covers the technology and concepts of ultra-wideband (UWB) radar systems. It provides up-to-date information for those who design, evaluate, analyze, or use UWB technology for any application. Since UWB technology is a developing field, the authors have stressed theory and hardware and have presented basic principles and concepts to help guide the design of UWB systems. Introduction to Ultra-Wideband Radar Systems is a comprehensive guide to the general features of UWB technology as well as a source for more detailed information.




Statistical Electromagnetics


Book Description

This book addresses the problem of treating interior responses of complex electronic enclosures or systems, and presents a probabilistic approach. Relationships for determining the statistics of the driving fields to apply to a circuit analysis code representing part of an enclosed system's writing are worked out. Also addressed are limited spatial and frequency coherence essential to a statistically based field drive model. This text gives examples, different modeling, and describes how to make, interchange, and optimize models.




Electromagnetic Symmetry


Book Description

This text is intended to help expand knowledge of electromagnetic theory. It integrates principles of quantum physics to electromagnetics with the aim of producing electromagnetic devices with more desirable performance features.




Ultra-Wideband, Short-Pulse Electromagnetics 3


Book Description

The first two international conferences on Ultra-Wideband (UWB), Short-Pulse (SP) Electromagnetics were held at Polytechnic University, Brooklyn, New York in 1992 and 1994. Their purpose was to focus on advanced technologies for generating, radiating, and detecting UWB,SP signals, on mathematical methods, their propagation and scattering, and on current as well as potential future applications. The success of these two conferences led to the desirability of scheduling a third conference. Impetus was provided by the electromagnetics community and discussions led by Carl Baum and Larry Carin resulted in the suggestion that the UWB conferences be moved around, say to government laboratories such as Phillips Laboratory. Consequently the decision was made by the Permanent HPEM Committee to expand AMEREM '96 to include the Third Ultra-Wide Band, Short-Pulse (UWB,SP 3) with the Third Unexploded Ordnance Detec tion and Range Remediation Conference (UXO) and the HPEMINEM Conference in Albuquerque, New Mexico during the period May 27-31, 1996. Planning is now underway for EUROEM '98 in June, 1998 in Tel Aviv, Israel. Joseph Shiloh is the conference chairman. A fourth UWB,SP meeting is planned as a part of this conference and Ehud Heyman will coordinate this part of the meeting. The papers which appear in this volume, the third in the UWB,SP series, update subject areas from the earlier UWB,SP conferences. These topics include pulse generation and detection, antennas, pulse propagation, scattering theory, signal processing, broadband electronic systems, and buried targets.




Impedance Boundary Conditions In Electromagnetics


Book Description

Electromagnetic scattering from complex objects has been an area of in-depth research for many years. A variety of solution methodologies have been developed and utilised for the solution of ever increasingly complex problems. Among these methodologies, the subject of impedance boundary conditions has interested the authors for some time. In short, impedance boundary conditions allow one to replace a complex structure with an appropriate impedance relationship between the electric and magnetic fields on the surface of the object. This simplifies the solution of the problem considerably, allowing one to ignore the complexity of the internal structure beneath the surface. This book examines impedance boundary conditions in electromagnetics. The introductory chapter provides a presentation of the role of the impedance boundary conditions in solving practical electromagnetic problems and some historical background. One of the main objectives of this book is to present a unified and thorough discussion of this important subject. A method based on a spectral domain approach is presented to derive the Higher Order Impedance Boundary Conditions (HOIBC). The method includes all of the existing approximate boundary conditions, such as the Standard Impedence Boundary Condition, the Tensor Impedence Boundary Condition and the Generalised Impedance Boundary Conditions, as special cases. The special domain approach is applicable to complex coatings and surface treatments as well as simple dielectric coatings. The spectral domain approach is employed to determine the appropriate boundary conditions for planar dielectric coatings, chiral coatings and corregated conductors. The accuracy of the proposal boundary conditions is discussed. The approach is then extended to include the effects of curvature and is applied to curved dielectric and chiral coatings. Numerical data is presented to critically assess the accuracy of the results obtained using various forms of the impedence boundary conditions. A number of appendices that provide more detail on some of the topics addressed in the main body of the book and a selective list of references directly related to the topics addressed in this book are also included.