Noise and Nonlinear Phenomena in Nuclear Systems


Book Description

The main goal of the meeting was to facilitate and encourage the application of recent developments in the physical and mathematical sciences to the analysis of deterministic and stochastic processes in nuclear engineering. In contrast with the rapid growth (triggered by computer developments) of nonlinear analysis in other branches of the physical sciences, the theoretical analysis of nuclear reactors is still based on linearized models of the neutronics and thermal-hydraulic feedback loop, an approach that ignores some intrinsic nonlinearities of the real system. The subject of noise was added because of the importance of the noise technique in detecting abnormalities associated with perturbations of sufficient amplitude to generate nonlinear processes. Consequently the organizers of the meeting invited a group of leading researchers in the field of noise and nonlinear phenomena in nuclear systems to report on recent advances in their area of research. A selected subgroup of researchers in areas outside the reactor field provided enlightenment on new theoretical developments of immediate relevance to nuclear dynamics theory.




Anticipated and Abnormal Plant Transients in Light Water Reactors


Book Description

Over the last 30 years, reactor safety technology has evolved not so much from a need to recover from accidents or incidents, but primarily from many groups in the nuclear community asking hypo thetical, searching (what if) ~uestions. This ~uestioning has indeed paid off in establishing preventive measures for many types of events and potential accidents. Conditions, such as reactivity excursions, large break, loss of coolant, core melt, and contain ment integrity loss, to name a few, were all at one time topics of protracted discussions on hypothesized events. Historically, many of these have become multiyear, large-scale research programs aimed at resolving the "what ifs. " For the topic of anticipated and abnormal plant transients, how ever, the searching ~uestions and the research were not so prolific until the mid-1970s. At that time, probabilistic risk methodolo gies began to tell us we should change our emphasis in reactor safety research and development and focus more on small pipe breaks and plant transients. Three Mile Island punctuated that message in 1979. The plant transient topic area is a multidisciplinary subject involving not only the nuclear, fluid flow, and heat transfer technologies, but also the synergistics of these with the reactor control systems, the safety s;,"stems, operator actions, maintenance and even management and the economic considerations of a given plant.










Enhanced Severe Transient Analysis for Prevention Technical Program Plan


Book Description

This document outlines the development of a high fidelity, best estimate nuclear power plant severe transient simulation capability that will complement or enhance the integral system codes historically used for licensing and analysis of severe accidents. As with other tools in the Risk Informed Safety Margin Characterization (RISMC) Toolkit, the ultimate user of Enhanced Severe Transient Analysis and Prevention (ESTAP) capability is the plant decision-maker; the deliverable to that customer is a modern, simulation-based safety analysis capability, applicable to a much broader class of safety issues than is traditional Light Water Reactor (LWR) licensing analysis. Currently, the RISMC pathway's major emphasis is placed on developing RELAP-7, a next-generation safety analysis code, and on showing how to use RELAP-7 to analyze margin from a modern point of view: that is, by characterizing margin in terms of the probabilistic spectra of the "loads" applied to systems, structures, and components (SSCs), and the "capacity" of those SSCs to resist those loads without failing. The first objective of the ESTAP task, and the focus of one task of this effort, is to augment RELAP-7 analyses with user-selected multi-dimensional, multi-phase models of specific plant components to simulate complex phenomena that may lead to, or exacerbate, severe transients and core damage. Such phenomena include: coolant crossflow between PWR assemblies during a severe reactivity transient, stratified single or two-phase coolant flow in primary coolant piping, inhomogeneous mixing of emergency coolant water or boric acid with hot primary coolant, and water hammer. These are well-documented phenomena associated with plant transients but that are generally not captured in system codes. They are, however, generally limited to specific components, structures, and operating conditions. The second ESTAP task is to similarly augment a severe (post-core damage) accident integral analyses code with high fidelity simulations that would allow investigation of multi-dimensional, multi-phase containment phenomena that are only treated approximately in established codes.




Transient Phenomena in Electrical Power Systems


Book Description

Transient Phenomena in Electrical Power Systems: Problems and Illustrations deals with the technique of calculating the different transient phenomena in electrical power systems. Concrete examples are given to show the character of the transient processes, and the order of magnitude is derived in some typical cases. Topics covered include equivalent circuits, steady-state quantities, and the initial conditions of a transient process. The characteristics of generators and synchronous condensers are also considered. Comprised of nine chapters, this book begins with an introduction to the units of measurement as well as the equations of the system and its elements, such as frequency regulators, turbine governors, and transformers. The second chapter presents examples of the construction of equivalent circuits and the determination of the steady-state operation of a system, along with the original condition that precedes the transient process. The third and fourth chapters deal with different characteristics of generators, synchronous condensers, and loads of electrical systems. The fifth chapter examines the general criteria of stability used in calculations of the conditions in electrical systems. Problems of static stability and the effect of large oscillations on stability are discussed in the next three chapters. The final chapter is devoted to special problems on the variation of operating conditions, frequency variation, and the flow of power between systems. This monograph is written for design engineers, operation engineers, apprentices, and students.




Transient Phenomena in Electrical Power Systems


Book Description

Electronics and Instrumentation, Volume 24: Transient Phenomena in Electrical Power Systems presents the methods for calculating the stability and the transient behavior of systems with forced excitation control. This book provides information pertinent to the analysis of transient phenomena in electro-mechanical systems. Organized into five chapters, this volume begins with an overview of the principal requirements in an excitation system. This text then explains the electromagnetic and electro-mechanical phenomena, taking into account the mutual action between the components of the system. Other chapters consider the behavior of an electrical system subjected to small disturbances from a steady state, which is important in assessing the operation of the system under normal conditions. This book discusses as well the ability of a system to return to its initial state following a small disturbance. The final chapter deals with the operational characteristics of an electrical power system. This book is a valuable resource for engineers and scientists.




Transient Phenomena in Electrical Power Systems


Book Description

Transient Phenomena in Electrical Power Systems analyzes transient phenomena in electro-mechanical systems, and of the steady conditions which precede or follow such transient condition. The book deals with the short-period transient processes connected with changes in the electro-mechanical condition of the system, the normal steady state, and also the steady fault condition. The text also investigates electro-mechanical and electromagnetic phenomena, including the inter-actions of the components in the system, with emphasis on the determination of conditions leading to stability. The book deals with transient phenomena either by assuming linearity for all circuit parameters, or by allowing for some non-linearity. The text progresses from simplified physical concepts to more rigorous developments of appropriate mathematical models using principles related to the laws of mechanics and to the laws of electromagnetism. The book recommends practical stability calculations, some methods of improving power-handling capacities, as well as the stability of transmission lines and power systems. The book is beneficial to electrical engineers, technical designers, and structural engineers whose works are related with power generation or hydro-electric stations.