Transition Metal Oxides


Book Description

Transition metal oxides form a series of compounds with a uniquely wide range of electronic properties. The main aim of this book is to describe the varied electronic behaviour shown by transition metal oxides, and to discuss the different types of theoretical models that have been proposed to interpret this behaviour.




Physics of Transition Metal Oxides


Book Description

The fact that magnetite (Fe304) was already known in the Greek era as a peculiar mineral is indicative of the long history of transition metal oxides as useful materials. The discovery of high-temperature superconductivity in 1986 has renewed interest in transition metal oxides. High-temperature su perconductors are all cuprates. Why is it? To answer to this question, we must understand the electronic states in the cuprates. Transition metal oxides are also familiar as magnets. They might be found stuck on the door of your kitchen refrigerator. Magnetic materials are valuable not only as magnets but as electronics materials. Manganites have received special attention recently because of their extremely large magnetoresistance, an effect so large that it is called colossal magnetoresistance (CMR). What is the difference between high-temperature superconducting cuprates and CMR manganites? Elements with incomplete d shells in the periodic table are called tran sition elements. Among them, the following eight elements with the atomic numbers from 22 to 29, i. e. , Ti, V, Cr, Mn, Fe, Co, Ni and Cu are the most im portant. These elements make compounds with oxygen and present a variety of properties. High-temperature superconductivity and CMR are examples. Most of the textbooks on magnetism discuss the magnetic properties of transition metal oxides. However, when one studies magnetism using tradi tional textbooks, one finds that the transport properties are not introduced in the initial stages.




Transition Metal Oxides


Book Description




Handbook of Nanocomposite Supercapacitor Materials I


Book Description

This book delivers a comprehensive overview of the characteristics of several types of materials that are widely used in the current era of supercapacitors; namely, architectured carbon materials, transition metal oxides and conducting polymers. It provides readers with a complete introduction to the fundamentals of supercapacitors, including the development of new electrolytes and electrodes, while highlighting the advantages, challenges, applications and future of these materials. This book is part of the Handbook of Nanocomposite Supercapacitor Materials. Supercapacitors have emerged as promising devices for electrochemical energy storage, playing an important role in energy harvesting for meeting the current demands of increasing global energy consumption. The handbook covers the materials science and engineering of nanocomposite supercapacitors, ranging from their general characteristics and performance to materials selection, design and construction. Covering both fundamentals and recent developments, this handbook serves a readership encompassing students, professionals and researchers throughout academia and industry, particularly in the fields of materials chemistry, electrochemistry, and energy storage and conversion. It is ideal as a reference work and primary resource for any introductory senior-level undergraduate or beginning graduate course covering supercapacitors.




Frontiers of 4D- and 5D-transition Metal Oxides


Book Description

This book is aimed at advanced undergraduates, graduate students and other researchers who possess an introductory background in materials physics and/or chemistry, and an interest in the physical and chemical properties of novel materials, especially transition metal oxides.New materials often exhibit novel phenomena of great fundamental and technological importance. Contributing authors review the structural, physical and chemical properties of notable 4d- and 5d-transition metal oxides discovered over the last 10 years. These materials exhibit extraordinary physical properties that differ significantly from those of the heavily studied 3d-transition metal oxides, mainly due to the relatively strong influence of the spin-orbit interaction and orbital order in 4d- and 5d materials. The immense growth in publications addressing the physical properties of these novel materials underlines the need to document recent advances and the current state of this field. This book includes overviews of the current experimental situation concerning these materials.




Functional Metal Oxides


Book Description

Functional oxides are used both as insulators and metallic conductors in key applications across all industrial sectors. This makes them attractive candidates in modern technology ? they make solar cells cheaper, computers more efficient and medical instrumentation more sensitive. Based on recent research, experts in the field describe novel materials, their properties and applications for energy systems, semiconductors, electronics, catalysts and thin films. This monograph is divided into 6 parts which allows the reader to find their topic of interest quickly and efficiently. * Magnetic Oxides * Dopants, Defects and Ferromagnetism in Metal Oxides * Ferroelectrics * Multiferroics * Interfaces and Magnetism * Devices and Applications This book is a valuable asset to materials scientists, solid state chemists, solid state physicists, as well as engineers in the electric and automotive industries.




Adsorption and Catalysis on Transition Metals and Their Oxides


Book Description

This book deals with adsorption and catalysis on the surface of transition elements and their compounds, many of which are in teresting because of their particular electronic structure. The authors have worked through a vast body of experimental evi dence on the structure and properties of surfaces of transition metals and relevant oxides. Consideration is given mostly to simple (as opposed to mixed) oxides of transition elements, to common metals and to the adsorption of simple gases. A great deal of attention is paid to the nature of active surface sites responsible for chemisorption and catalytic transformations. The description relies mainly on the simplified ligand-field theory, which, however, proves quite satisfactory for predicting the adsorptive and catalytic activity of species. In many cases simple systems were explored with the aid of novel techniques, and it is only for such systems that the mechanism of the ele mentary act of adsorption and catalysis can be given adequate treatment. The present monograph has emerged from our earlier work in Russian, which appeared in the Khimiya Publishing House (Mos cow) in 1981. This English edition has, however, been revised completely to broaden its scope and to include more recent a chievements. For fruitful discussions the authors are grateful to A.A.




Metal Oxides in Supercapacitors


Book Description

Metal Oxides in Supercapacitors addresses the fundamentals of metal oxide-based supercapacitors and provides an overview of recent advancements in this area. Metal oxides attract most of the materials scientists use due to their excellent physico-chemical properties and stability in electrochemical systems. This justification for the usage of metal oxides as electrode materials in supercapacitors is their potential to attain high capacitance at low cost. After providing the principles, the heart of the book discusses recent advances, including: binary metal oxides-based supercapacitors, nanotechnology, ternary metal oxides, polyoxometalates and hybrids. Moreover, the factors affecting the charge storage mechanism of metal oxides are explored in detail. The electrolytes, which are the soul of supercapacitors and a mostly ignored character of investigations, are also exposed in depth, as is the fabrication and design of supercapacitors and their merits and demerits. Lastly, the market status of supercapacitors and a discussion pointing out the future scope and directions of next generation metal oxides based supercapacitors is explored, making this a comprehensive book on the latest, cutting-edge research in the field. - Explores the most recent advances made in metal oxides in supercapacitors - Discusses cutting-edge nanotechnology for supercapacitors - Includes fundamental properties of metal oxides in supercapacitors that can be used to guide and promote technology development - Contains contributions from leading international scientists active in supercapacitor research and manufacturing




Metal Oxides


Book Description

The chemistry of metals has traditionally been more understood than that of its oxides. As catalytic applications continue to grow in a variety of disciplines, Metal Oxides: Chemistry and Applications offers a timely account of transition-metal oxides (TMO), one of the most important classes of metal oxides, in the context of catalysis. The




Transition Metal Compounds


Book Description

This book describes all aspects of the physics of transition metal compounds, providing a comprehensive overview of this diverse class of solids. Set within a modern conceptual framework, this is an invaluable, up-to-date resource for graduate students, researchers and industrial practitioners in solid-state physics and chemistry, materials science, and inorganic chemistry.