Transition Metals and Organometallics as Catalysts for Olefin Polymerization


Book Description

More than 30 years after the discovery of transition metals and organometal lics as catalysts for olefin polymerization these catalysts did not have lost their fascination. Since 1953 when Karl Ziegler has discovered the catalytic polymerization of ethylene leading to plastically formable polymers which are mechanically stable up to temperatures of about 100°C, synthetic polymers and rubbers have made their way right into private houses. This discovery has been a main impetus for the fast growing production of plastics. The stereoselective poly merization of propylene and other long-chain a-olefins first detected by Giulio Natta leads to an even broadened field of applications. Another enforcing factor were the developments of Standard Oil of Indiana and Phillipps Petroleum Company who engaged in the polymerization of a-olefins supported molybdenum, cobalt and later on chromium catalysts which clearly indicates the wide variety of suitable systems. This kind of research acknowledged merit when in 1963 the Nobel prize of chemistry was awarded to Ziegler and Natta. Although to a great extent there is a technical application for these catalysts, up to now the nature of the active centres and many reaction mechanisms are not completely known.




Metalorganic Catalysts for Synthesis and Polymerization


Book Description

45 years after the discovery of transition metals and organometallics as cocatalysts for the polymerization of olefins and for organic synthesis, these compounds have not lost their fascination. The birthday of Karl Ziegler, the great pioneer in this metalorganic catalysis, is now 100 years ago. Polyolefins and polydienes produced by Ziegler-Natta catalysis are the most important plastics and elastomers. New impulses for the polymerization of olefins have been brought about by highly active metallocenes and other single site catalysts. Just by changing the ligands of the organometallic compounds, the structure of the polymers produced can be tailored in a wide manner. In invited lectures and posters, relevant aspects of the metalorganic catalysts for synthesis and polymerization are discussed in this book. This includes mechanism and kinetics, stereochemistry, material properties, and industrial applications.




Metal Catalysts in Olefin Polymerization


Book Description

Polyolefin is a major industry that is important for our economy and impacts every aspect of our lives. The discovery of new transition metal-based catalysts is one of the driving forces for the further advancement of this field. Whereas the classical heterogeneous Ziegler-Natta catalysts and homogeneous early transition metal metallocene catalysts remain the workhorses of the polyolefin industry, in roughly the last decade, tremendous progress has been made in developing non-metallocene-based olefin polymerization catalysts. Particularly, the discovery of late transition metal-based olefin polymerization catalysts heralds a new era for this field. These late transition metal complexes not only exhibit high activities rivaling their early metal counterparts, but more importantly they offer unique properties for polymer architectural control and copolymerization with polar olefins. In this book, the most recent major breakthroughs in the development of new olefin polymerization catalysts, including early metal metallocene and non-metallocene complexes and late transition metal complexes, are discussed by leading experts. The authors highlight the most important discoveries in catalysts and their applications in designing new polyolefin-based functional materials.




Olefin Polymerization


Book Description

With an enormous velocity, olefin polymerization has expanded to one of the most significant fields in polymers since the first industrial use about 50 years ago. In 2005, 100 million tons of polyolefins were produced - the biggest part was catalyzed by metallorganic compounds. The Hamburg Macromolecular Symposium 2005 with the title "Olefin Polymerization" involved topics such as new catalysts and cocatalysts, kinetics, mechanism and polymer reaction engineering, synthesis of special polymers, and characterization of polyolefins. The conference combined scientists from different disciplines to discuss latest research results of polymers and to offer each other the possibility of cooperation. This is reflected in this volume, which contains invited lectures and selected posters presented at the symposium.




Handbook of Transition Metal Polymerization Catalysts


Book Description

Including recent advances and historically important catalysts, this book overviews methods for developing and applying polymerization catalysts – dealing with polymerization catalysts that afford commercially acceptable high yields of polymer with respect to catalyst mass or productivity. • Contains the valuable data needed to reproduce syntheses or use the catalyst for new applications • Offers a guide to the design and synthesis of catalysts, and their applications in synthesis of polymers • Includes the information essential for choosing the appropriate reactions to maximize yield of polymer synthesized • Presents new chapters on vanadium catalysts, Ziegler catalysts, laboratory homopolymerization, and copolymerization




Organometallic Catalysts and Olefin Polymerization


Book Description

"Catalysis is more art than science", probably all of you have heard and even used this expression. Whether it is true or not, it alludes to the experience that new catalysts are hard to find, and near impossible to predict. Hard work and a lifetime of experience is invaluable. However, a keen mind might give insight into where to search, but not necessarily about where to find the answers. Historically, "quantum leaps" have often arisen from serendipity - we all know the story about the nickel-contaminated reactor that triggered further research towards the first coordination catalyst for ethene polymerization. Taking advan tage of this event, Karl Ziegler became the first chemist to earn both a Nobel prize and a fortune for the same invention. A broken NMR tube helped Walter Kaminsky discover the effect of high concentrations of methylaluminoxanes as co catalysts for metallocenes. When air reacted with the concentrated trim ethyl aluminum solution, sufficient amounts of methylaluminoxanes were formed, and the lazy catalyst dormant in the NMR tube suddenly became sensationally active. Ziegler and Kaminsky were lucky and had the genius needed to take advantage of their luck.




Handbook of Transition Metal Polymerization Catalysts


Book Description

A one-stop resource for understanding and applying polymerization catalysts An edited volume featuring contributions from leading researchers, the Handbook of Transition Metal Polymerization Catalysts covers the design and synthesis of catalysts, and their applications in synthesis of polymers. Dealing with those polymerization catalysts that afford commercially acceptable yields of polymer with respect to catalyst mass and promising newer catalysts, this practical reference provides polymer and organic chemists with a comprehensive overview of the known methods for developing and applying these important catalysts. With both recent advances and historically important catalysts, the subjects covered in this text include: Metal alkyls and other compounds that function as co-catalysts with a large number of catalysts The varieties of porous silica either necessary or valuable in certain catalyst formulations Catalyst scale-up and commercialization Copper catalysts for olefin polymerization Morphology control Along with the above topics, the Handbook of Transition Metal Polymerization Catalysts provides tables of valuable data to assist in reproducing a synthesis or applying the knowledge to a new problem. Polymerization reactivities, polymer properties, monomer and solvent purity requirements, molecular weights, distribution, and reactivity ratios are also covered. The Handbook of Transition Metal Polymerization Catalysts offers an excellent one-stop resource for understanding and applying polymerization catalysts.




Polyolefins: 50 years after Ziegler and Natta I


Book Description

Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist.




The Organometallic Chemistry of the Transition Metals


Book Description

Fully updated and expanded to reflect recent advances, this Fourth Edition of the classic text provides students and professional chemists with an excellent introduction to the principles and general properties of organometallic compounds, as well as including practical information on reaction mechanisms and detailed descriptions of contemporary applications.




Alkene Polymerization Reactions with Transition Metal Catalysts


Book Description

During the past 30 years, the field of alkene polymerization over transition metal catalysts underwent several major changes:1. The list of commercial heterogeneous Ziegler-Natta catalysts for the synthesis of polyethylene and stereoregular polyolefins was completely renewed affording an unprecedented degree of control over the polymer structure.2. Research devoted to metallocene and other soluble transition-metal catalysis has vastly expanded and has shifted toward complexes of transition metals with multidentate ligands.3. Recent developments in gel permeation chromatography, temperature-rising fractionation, and crystallization fractionation provided the first reliable information about differences between various active centers in transition-metal catalysts.4. A rapid development of high-resolution 13C NMR spectroscopy resulted in greatly expanded understanding of the chemical and steric features of polyolefins and alkene copolymers. These developments require a new review of all aspects of alkene polymerization reactions with transition-metal catalysts. The first chapter in the book is an introductory text for researchers who are entering the field. It describes the basic principles of polymerization reactions with transition-metal catalysts, the types of catalysts, and commercially manufactured polyolefins. The next chapter addresses the principal issue of alkene polymerization catalysis: the existence of catalyst systems with single and multiple types of active centers. The subsequent chapters are devoted to chemistry and stereochemistry of elemental reaction steps, structures of catalyst precursors and reactions leading to the formation of active centers, kinetics of polymerization reactions, and their mechanisms.The book describes the latest commercial polymerization catalysts for the synthesis of polyethylenes and polypropylene The book provides a detailed description of the multi-center nature of commercial Ziegler-Natta catalysts. The book devotes specialized chapters to the most important aspects of transition metal polymerization catalysts: the reactions leading to the formation of active centers, the chemistry and stereochemistry of elemental polymerization steps, reaction kinetics, and the polymerization mechanism. The book contains an introductory chapter for researchers who are entering the field of polymerization catalysis. It describes the basic principles of polymerization reactions with transition-metal catalysts and the types of commercially manufactured polyolefins and copolymersThe book contains over 2000 references, the most recent up to end of 2006.