Transition Metals, Second Edition


Book Description

More so than any of the other major groups of elements in the periodic table, the transition metals have shaped human history and have been the workhorses of industry. The discovery of metallic copper ended the Stone Age and ushered in the Bronze Age. Alloys of iron (especially steel) later took over, and the Iron Age replaced the Bronze Age. Copper, silver, and gold—and, more recently, platinum—have been the precious metals from which coins and jewelry have been made from ancient times to the present. Each chapter in the newly updated, full-color Transition Metals, Second Edition discusses a group of elements, including their similarities and differences and current research and applications. Ideal for high school or college students interested in chemistry and physics, this straightforward resource is devoted to the chemical and physical properties of transition metals and how they are useful in everyday life. Some of the transition metals covered include scandium, titanium, manganese, cobalt, and zinc.




Organic Synthesis Using Transition Metals


Book Description

Transition metals open up new opportunities for synthesis, because their means of bonding and their reaction mechanisms differ from those of the elements of the s and p blocks. In the last two decades the subject has mushroomed - established reactions are seeing both technical improvements and increasing numbers of applications, and new reactions are being developed. The practicality of the subject is demonstrated by the large number of publications coming from the process development laboratories of pharmaceutical companies, and its importance is underlined by the fact that three Nobel prizes have been awarded for discoveries in this field in the 21st Century already. Organic Synthesis Using Transition Metals, 2nd Edition considers the ways in which transition metals, as catalysts and reagents, can be used in organic synthesis, both for pharmaceutical compounds and for natural products. It concentrates on the bond-forming reactions that set transition metal chemistry apart from "classical" organic chemistry. Each chapter is extensively referenced and provides a convenient point of entry to the research literature. Topics covered include: introduction to transition metals in organic synthesis coupling reactions C-H activation carbonylative coupling reactions alkene and alkyne insertion reactions electrophilic alkene and alkyne complexes reactions of alkyne complexes carbene complexes h3- or p-allyl -allyl complexes diene, dienyl and arene complexes cycloaddition and cycloisomerisation reactions For this second edition the text has been extensively revised and expanded to reflect the significant improvements and advances in the field since the first edition, as well as the large number of new transition metal-catalysed processes that have come to prominence in the last 10 years – for example the extraordinary progress in coupling reactions using “designer” ligands, catalysis using gold complexes, new opportunities arising from metathesis chemistry, and C-H activation – without neglecting the well established chemistry of metals such as palladium. Organic Synthesis Using Transition Metals, 2nd Edition will find a place on the bookshelves of advanced undergraduates and postgraduates working in organic synthesis, catalysis, medicinal chemistry and drug discovery. It is also useful for practising researchers who want to refresh and enhance their knowledge of the field.




Transition Metals in the Synthesis of Complex Organic Molecules


Book Description

This second edition offers easy access to the field of organotransition metal chemistry. The book covers the basics of transition metal chemistry, giving a practical introduction to organotransition reaction mechanisms.







Handbook of Transition Metal Polymerization Catalysts


Book Description

Including recent advances and historically important catalysts, this book overviews methods for developing and applying polymerization catalysts – dealing with polymerization catalysts that afford commercially acceptable high yields of polymer with respect to catalyst mass or productivity. • Contains the valuable data needed to reproduce syntheses or use the catalyst for new applications • Offers a guide to the design and synthesis of catalysts, and their applications in synthesis of polymers • Includes the information essential for choosing the appropriate reactions to maximize yield of polymer synthesized • Presents new chapters on vanadium catalysts, Ziegler catalysts, laboratory homopolymerization, and copolymerization




The Organometallic Chemistry of the Transition Metals


Book Description

Fully updated and expanded to reflect recent advances, this Fourth Edition of the classic text provides students and professional chemists with an excellent introduction to the principles and general properties of organometallic compounds, as well as including practical information on reaction mechanisms and detailed descriptions of contemporary applications.




Transition Metal Carbonyl Cluster Chemistry


Book Description

Transition metal carbonyl clusters (TMCCs) continue to inspire great interest in chemical research, as much for their fascinating structures as for potential industrial applications conferred by their unique properties. This highly accessible book introduces the bonding, structure, spectroscopic properties, and characterization of clusters, and then explores their synthesis, reactivity, reaction mechanisms and use in organic synthesis and catalysis. Transition Metal Carbonyl Cluster Chemistry describes models and rules that correlate cluster structure with electron count, which are then applied in worked examples. Subsequent chapters explain how bonding relates to molecular structure, demonstrate the use of spectroscopic techniques such as NMR, IR and MS in cluster chemistry, and outline the factors contributing to the stability, dynamics and reactivity of clusters. The second part of this book discusses the synthesis and applications of TMCCs. It emphasizes the differences between the reactivities of clusters vs. mononuclear metal complexes, contingent to the availability of multiple-bonding sites and heterosite reactivity. The final chapters discuss reactions in which clusters act as homogeneous catalysts; including discussion on the use of solid and biphasic liquid-liquid supported clusters in heterogeneous catalysts. A useful reference for those commencing further research or post-graduate study on metal carbonyl clusters and advanced organometallic chemistry, this book is also a cornerstone addition to academic and libraries as well as private collections.




Homogeneous Catalysis


Book Description

Contains a balanced discussion of homogeneous catalytic reactions that are used in industry, featuring every documented example employed in a current commercial process, or that have a broad application in the organic synthesis laboratory. Incorporates synthesis with chiral catalysts in chapters on hydrogenation, CO chemistry and olefin oxidation. New additions include Tennessee Eastman's coal-based acetic anhydride plant and IFP's Dimersol process for dimerizing propylene as well as major changes in the areas on pharmaceuticals, flavors, fragrances, agricultural and electronic chemicals.




Transition Metal Compounds


Book Description

This book describes all aspects of the physics of transition metal compounds, providing a comprehensive overview of this diverse class of solids. Set within a modern conceptual framework, this is an invaluable, up-to-date resource for graduate students, researchers and industrial practitioners in solid-state physics and chemistry, materials science, and inorganic chemistry.




Mössbauer Spectroscopy and Transition Metal Chemistry


Book Description

Two decades have passed since the original discovery of recoilless nuclear gamma resonance by Rudolf Mossbauer; the spectroscopic method based on this resonance effect - referred to as Mossbauer spectroscopy - has developed into a powerful tool in solid-state research. The users are chemists, physicists, biologists, geologists, and scientists from other disciplines, and the spectrum of problems amenable to this method has become extraordinarily broad. In the present volume we have confined ourselves to applications of Mossbauer spectroscopy to the area of transition elements. We hope that the book will be useful not only to non-Mossbauer special ists with problem-Oriented activities in the chemistry and physics of transition elements, but also to those actively working in the field of Mossbauer spectroscopy on systems (compounds as well as alloys) of transition elements. The first five chapters are directed to introducing the reader who is not familiar with the technique to the principles of the recoilless nuclear resonance effect, the hyperfme interactions between nuclei and electronic properties such as electric and magnetic fields, some essential aspects about measurements, and the evaluation of Moss bauer spectra. Chapter 6 deals with the interpretation of Mossbauer parameters of iron compounds. Here we have placed emphasis on the information about the electronic structure, in correlation with quantum chemical methods, because of its importance for chemical bonding and magnetic properties.