Transmission Line Matrix (TLM) in Computational Mechanics


Book Description

The finite element method reigns as the dominant technique for modeling mechanical systems. Originally developed to model electromagnetic systems, the Transmission Line Matrix (TLM) method proves to match, and in some cases exceed, the effectiveness of finite elements for modeling several types of physical systems. Transmission Line Matrix in Computational Mechanics provides a tutorial approach to applying TLM for modeling mechanical and other physical systems. Transmission Line Matrix in Computational Mechanics begins with the history of TLM, an introduction to the theory using mechanical engineering concepts, and the electromagnetic basics of TLM. The authors then demonstrate the theory for use in acoustic propagation, along with examples of MATLAB® code. The remainder of the book explores the application of TLM to problems in mechanics, specifically heat and mass transfer, elastic solids, simple deformation models, hydraulic systems, and computational fluid dynamics. A discussion of state-of-the-art techniques concludes the book, offering a look at the current research undertaken by the authors and other leading experts to overcome the limitations of TLM in applying the method to diverse types of systems. This valuable reference introduces students, engineers, and researchers to a powerful, accurate, and stable alternative to finite elements, providing case studies and examples to reinforce the concepts and illustrate the applications.




Transmission Line Matrix (TLM) in Computational Mechanics


Book Description

The finite element method reigns as the dominant technique for modeling mechanical systems. Originally developed to model electromagnetic systems, the Transmission Line Matrix (TLM) method proves to match, and in some cases exceed, the effectiveness of finite elements for modeling several types of physical systems. Transmission Line Matrix in Compu




Transmission Line Matrix (TLM) Techniques for Diffusion Applications


Book Description

Transmission Line Matrix (TLM) is a numerical technique which is based upon establishing an analogue between a space and time dependent physical problem and an electrical network which includes transmission lines. By their very nature these enforce time discretization on the network which can then be solved explicitly in the time-domain. Although it is best known in electromagnetic applications, TLM can also be used to model diffusion phenomena, and this book outlines the state of the art in this area. The first part of the book deals with theory and techniques. The second part is devoted to the development of algorithms for specific applications. This is arranged as a historical sequence starting with heat-flow and matter diffusion. The remainder of the book outlines many of the ingenious exploitations of the unique properties of TLM, including topics such as the solution of convection, Poisson, Laplace, and time-dependent Schrodinger equations. Applications in the firing of ceramics, chromatography, image processing, and the solution of inverse thermal problems are also covered.




Applied Computational Electromagnetics


Book Description

@EOI: AEI rEOMETPEI Epigram of the Academy of Plato in Athens Electromagnetism, the science of forces arising from Amber (HAEKTPON) and the stone of Magnesia (MArNHLIA), has been the fOWldation of major scientific breakthroughs, such as Quantum Mechanics and Theory of Relativity, as well as most leading edge technologies of the twentieth century. The accuracy of electromagnetic fields computations for engineering purposes has been significantly improved during the last decades, due to the deVelopment of efficient computational techniques and the availability of high performance computing. The present book is based on the contributions and discussions developed during the NATO Advanced Study Institute on Applied Computational Electromagnetics: State of the Art and Future Trends, which has taken place in Hellas, on the island of Samos, very close to the birthplace of Electromagnetism. The book covers the fundamental concepts, recent developments and advanced applications of Integral Equation and Metliod of Moments Techniques, Finite Element and BOWldary Element Methods, Finite Difference Time Domain and Transmission Line Methods. Furthermore, topics related to Computational Electromagnetics, such as Inverse Scattering, Semi-Analytical Methods and Parallel Processing Techniques are included. The collective presentation of the principal computational electromagnetics techniques, developed to handle diverse challenging leading edge technology problems, is expected to be useful to researchers and postgraduate students working in various topics of electromagnetic technologies.




Electromagnetic Analysis Using Transmission Line Variables


Book Description

V. Boundary conditions and dispersion. 5.1. Dielectric-dielectric interface. Node coupling: nearest node and multi-coupled node approximations. 5.2. Nearest nodes for ID interface. 5.3. Nearest nodes at 2D interface. 5.4. Truncated cell and oblique interface. 5.5. Single index cell notation. 5.6. Simplified iteration neglecting the nearest node approximation. 5.7. Non-uniform dielectric. Use of cluster cells. Other boundary conditions. 5.8. Dielectric- open circuit interface. 5.9. Dielectric - conductor interface. 5.10. Input/output conditions. 5.11. Composite transmission line. 5.12. Determination of initial static field by TLM method. 5.13. Time varying source voltage and antenna simulation. Dispersion. 5.14. Dispersion sources. 5.15. Dispersion example. 5.16. Propagation velocity in terms of wave number. 5.17. Dispersive properties of node resistance. 5.18. Node resistance in terms of wave number. 5.19. Anomalous dispersion. Incorporation of dispersion into TLM formulation. 5.20. Dispersion approximations. 5.21. Outline of dispersion calculation using the TLM method. 5.22. One dimensional dispersion iteration. 5.23. Initial conditions with dispersion present. 5.24. Stability of initial profiles with dispersion present. 5.25. Replacement of non-uniform field in cell with effective uniform field -- VI. Cell discharge properties and integration of transport phenomena into the TLM matrix. 6.1. Charge transfer between cells. 6.2. Relationship between field and cell charge. 6.3. Dependence of conductivity on carrier properties. Integration of carrier transport using TLM notation. Changes in cell occupancy and its effect on TLM iteration. 6.4. General continuity equations. 6.5. Carrier generation due to light activation. 6.6. Carrier generation due to avalanching: identical hole and electron drift velocities. 6.7. Avalanching with differing hole and electron drift velocities. 6.8. Two step generation process. 6.9. Recombination. 6.10. Limitations of simple exponential recovery model. 6.11. Carrier drift. 6.12. Cell charge iteraction.equivalence of drift and inter-cell currents. 6.13. Carrier diffusion. 6.14. Frequency of transport iteration. 6.15. Total contribution to changes in carrier cell occupancy -- VII. Description of TLM iteration. 7.1. Specification of geometry. 7.2. Description of inputs and TLM iteration outline. 7.3. Output format. Output simulation data. 7.4. Conditions during simulation. 7.5. Behavior during charge-up.establishment of static field profile. 7.6. Node resistance R(n,m) during activation. 7.7. Output pulse when semiconductor is activated. 7.8. Node recovery and its effect on output pulse. 7.9. Steady state and transient field profiles. 7.10. Partial activation of nodes and effect on profiles and output. 7.11. Cell charge following recovery. 7.12. Role ofTLM waves at charged boundary. 7.13. Comparison of possible boundary conditions at the semiconductor/dielectric interface. 7.14. Simulation results for boundary with non-integral nearest nodes. 7.15. Comparison of output with and without matched input /output lines. 7.16. Simulation of plane wave effects. Effect of alternating input -- VIII. Spice solutions. 8.1. Photoconductive switch. 8.2. Traveling wave Marx generator. 8.3. Traveling Marx wave in a layered dielectric. 8.4. Simulation of a traveling Marx wave in a layered dielectric. Pulse transformation and generation using non-uniform transmission lines. 8.5. Use of cell chain to simulate pulse transformer. 8.6. Pulse transformer simulation results. 8.7. Pulse sources using non-uniform TLM lines (switch at output). 8.8. Radial pulse source (switch at output). 8.9. Pulse sources with gain (PFXL sources). Darlington pulser. 8.10. TLM formulation of Darlington pulser. 8.11. SPICE simulation of Lossy Darlington Pulser.




Time Domain Methods in Electrodynamics


Book Description

This book consists of contributions given in honor of Wolfgang J.R. Hoefer. Space and time discretizing time domain methods for electromagnetic full-wave simulation have emerged as key numerical methods in computational electromagnetics. Time domain methods are versatile and can be applied to the solution of a wide range of electromagnetic field problems. Computing the response of an electromagnetic structure to an impulsive excitation localized in space and time provides a comprehensive characterization of the electromagnetic properties of the structure in a wide frequency range. The most important methods are the Finite Difference Time Domain (FDTD) and the Transmission Line Matrix (TLM) methods. The contributions represent the state of the art in dealing with time domain methods in modern engineering electrodynamics for electromagnetic modeling in general, the Transmission Line Matrix (TLM) method, the application of network concepts to electromagnetic field modeling, circuit and system applications and, finally, with broadband devices, systems and measurement techniques.




Foundations for Microstrip Circuit Design


Book Description

Building on the success of the previous three editions, Foundations for Microstrip Circuit Design offers extensive new, updated and revised material based upon the latest research. Strongly design-oriented, this fourth edition provides the reader with a fundamental understanding of this fast expanding field making it a definitive source for professional engineers and researchers and an indispensable reference for senior students in electronic engineering. Topics new to this edition: microwave substrates, multilayer transmission line structures, modern EM tools and techniques, microstrip and planar transmision line design, transmission line theory, substrates for planar transmission lines, Vias, wirebonds, 3D integrated interposer structures, computer-aided design, microstrip and power-dependent effects, circuit models, microwave network analysis, microstrip passive elements, and slotline design fundamentals.




Design and Analysis of Materials and Engineering Structures


Book Description

The idea of this monograph is to present the latest results related to design and analysis of materials and engineering structures. The contributions cover the field of mechanical and civil engineering, ranging from automotive to dam design, transmission towers and up to machine design and exmaples taken from oil industry. Well known experts present their research on damage and fracture of material and structures, materials modelling and evaluation up to image processing and visualization for advanced analyses and evaluation




Transmission Line Matrix (TLM) in Computational Mechanics


Book Description

The finite element method reigns as the dominant technique for modeling mechanical systems. Originally developed to model electromagnetic systems, the Transmission Line Matrix (TLM) method proves to match, and in some cases exceed, the effectiveness of finite elements for modeling several types of physical systems. Transmission Line Matrix in Compu




Transaction-Level Modeling with SystemC


Book Description

Suitable for bookstore catalogue