Transport Phenomena
Author : Robert Byron Bird
Publisher :
Page : 780 pages
File Size : 26,74 MB
Release : 1960
Category : Chemical engineering
ISBN :
Author : Robert Byron Bird
Publisher :
Page : 780 pages
File Size : 26,74 MB
Release : 1960
Category : Chemical engineering
ISBN :
Author : L. Gary Leal
Publisher : Cambridge University Press
Page : 7 pages
File Size : 41,66 MB
Release : 2007-06-18
Category : Technology & Engineering
ISBN : 1139462067
Advanced Transport Phenomena is ideal as a graduate textbook. It contains a detailed discussion of modern analytic methods for the solution of fluid mechanics and heat and mass transfer problems, focusing on approximations based on scaling and asymptotic methods, beginning with the derivation of basic equations and boundary conditions and concluding with linear stability theory. Also covered are unidirectional flows, lubrication and thin-film theory, creeping flows, boundary layer theory, and convective heat and mass transport at high and low Reynolds numbers. The emphasis is on basic physics, scaling and nondimensionalization, and approximations that can be used to obtain solutions that are due either to geometric simplifications, or large or small values of dimensionless parameters. The author emphasizes setting up problems and extracting as much information as possible short of obtaining detailed solutions of differential equations. The book also focuses on the solutions of representative problems. This reflects the book's goal of teaching readers to think about the solution of transport problems.
Author : John C. Slattery
Publisher : Springer Science & Business Media
Page : 1174 pages
File Size : 11,49 MB
Release : 2013-04-17
Category : Science
ISBN : 1475720904
Transport phenomena is used here to descril>e momentum, energy, mass, and entropy transfer (Bird et al. 1960, 1980). It includes thermodynamies, a special case of which is thermostatics. Interfacial transport phenomena refers to momentum, energy , mass, and entropy transfer within the immediate neighborhood of a phase interface, including the thermodynamies of the interface. In terms of qualitative physical observations, this is a very old field. Pliny the EIder (Gaius Plinius Secundus, 23-79 A.D.; Pliny 1938) described divers who released small quantities of oil from their mouths, in order to damp capillary ripples on the ocean surface and in this way provide more uniform lighting for their work. Similar stories were retold by Benjamin Franklin, who conducted experiments of his own in England (V an Doren 1938). In terms of analysis, this is a generally young field. Surface thermostatics developed relatively early, starting with Gibbs (1948) and continuing with important contributions by many others (see Chapter 5).
Author : Norbert Kockmann
Publisher : Springer Science & Business Media
Page : 382 pages
File Size : 42,75 MB
Release : 2007-11-12
Category : Science
ISBN : 3540746188
In this book, the fundamentals of chemical engineering are presented with respect to applications in micro system technology, microfluidics, and transport processes within microstructures. Special features of the book include the state-of-the-art in micro process engineering, a detailed treatment of transport phenomena for engineers, and a design methodology from transport effects to economic considerations.
Author : G. Hauke
Publisher : Springer Science & Business Media
Page : 301 pages
File Size : 34,67 MB
Release : 2008-08-26
Category : Technology & Engineering
ISBN : 1402085370
This book presents the foundations of fluid mechanics and transport phenomena in a concise way. It is suitable as an introduction to the subject as it contains many examples, proposed problems and a chapter for self-evaluation.
Author : David R. Gaskell
Publisher : Prentice Hall
Page : 664 pages
File Size : 19,48 MB
Release : 1992
Category : Science
ISBN :
This introduction to transport phenomena in materials engineering balances an explanation of the fundamentals governing fluid flow and the transport of heat and mass with their common applications to specific systems in materials engineering. It introduces the influences of properties and geometry on fluid flow using familiar fluids such as air and water. Covers topics such as engineering units and pressure in static fluids; momentum transport and laminar flow of Newtonian fluids; equations of continuity and conservation of momentum and fluid flow past submerged objects; turbulent flow; mechanical energy balance and its application to fluid flow; transport of heat by conduction; transport of heat by convection; transient heat flow; heat transport by thermal radiation; mass transport in the solid state by diffusion; mass transport in fluids. Includes extensive appendices.
Author : R. Byron Bird
Publisher : Wiley Global Education
Page : 786 pages
File Size : 49,99 MB
Release : 2015-02-13
Category : Technology & Engineering
ISBN : 1118953711
Introductory Transport Phenomena by R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, and Daniel Klingenberg is a new introductory textbook based on the classic Bird, Stewart, Lightfoot text, Transport Phenomena. The authors’ goal in writing this book reflects topics covered in an undergraduate course. Some of the rigorous topics suitable for the advanced students have been retained. The text covers topics such as: the transport of momentum; the transport of energy and the transport of chemical species. The organization of the material is similar to Bird/Stewart/Lightfoot, but presentation has been thoughtfully revised specifically for undergraduate students encountering these concepts for the first time. Devoting more space to mathematical derivations and providing fuller explanations of mathematical developments—including a section of the appendix devoted to mathematical topics—allows students to comprehend transport phenomena concepts at an undergraduate level.
Author : Jacob Bear
Publisher : Springer Science & Business Media
Page : 398 pages
File Size : 48,70 MB
Release : 1991-11-30
Category : Science
ISBN : 9780792314431
Transport phenomenain porous media are encounteredin various disciplines, e. g. , civil engineering, chemical engineering, reservoir engineering, agricul tural engineering and soil science. In these disciplines, problems are en countered in which various extensive quantities, e. g. , mass and heat, are transported through a porous material domain. Often, the void space of the porous material contains two or three fluid phases, and the various ex tensive quantities are transported simultaneously through the multiphase system. In all these disciplines, decisions related to a system's development and its operation have to be made. To do so a tool is needed that will pro vide a forecast of the system's response to the implementation of proposed decisions. This response is expressed in the form of spatial and temporal distributions of the state variables that describe the system's behavior. Ex amples of such state variables are pressure, stress, strain, density, velocity, solute concentration, temperature, etc. , for each phase in the system, The tool that enables the required predictions is the model. A model may be defined as a simplified version of the real porous medium system and the transport phenomena that occur in it. Because the model is a sim plified version of the real system, no unique model exists for a given porous medium system. Different sets of simplifying assumptions, each suitable for a particular task, will result in different models.
Author : Amir Faghri
Publisher : Academic Press
Page : 1072 pages
File Size : 50,6 MB
Release : 2006
Category : Multiphase flow
ISBN :
Engineering students in a wide variety of engineering disciplines from mechanical and chemical to biomedical and materials engineering must master the principles of transport phenomena as an essential tool in analyzing and designing any system or systems wherein momentum, heat and mass are transferred. This textbook was developed to address that need, with a clear presentation of the fundamentals, ample problem sets to reinforce that knowledge, and tangible examples of how this knowledge is put to use in engineering design. Professional engineers, too, will find this book invaluable as reference for everything from heat exchanger design to chemical processing system design and more. * Develops an understanding of the thermal and physical behavior of multiphase systems with phase change, including microscale and porosity, for practical applications in heat transfer, bioengineering, materials science, nuclear engineering, environmental engineering, process engineering, biotechnology and nanotechnology * Brings all three forms of phase change, i.e., liquid vapor, solid liquid and solid vapor, into one volume and describes them from one perspective in the context of fundamental treatment * Presents the generalized integral and differential transport phenomena equations for multi-component multiphase systems in local instance as well as averaging formulations. The molecular approach is also discussed with the connection between microscopic and molecular approaches * Presents basic principles of analyzing transport phenomena in multiphase systems with emphasis on melting, solidification, sublimation, vapor deposition, condensation, evaporation, boiling and two-phase flow heat transfer at the micro and macro levels * Solid/liquid/vapor interfacial phenomena, including the concepts of surface tension, wetting phenomena, disjoining pressure, contact angle, thin films and capillary phenomena, including interfacial balances for mass, species, momentum, and energy for multi-component and multiphase interfaces are discussed * Ample examples and end-of-chapter problems, with Solutions Manual and PowerPoint presentation available to the instructors
Author : John C. Slattery
Publisher : Cambridge University Press
Page : 735 pages
File Size : 20,30 MB
Release : 1999-07-13
Category : Technology & Engineering
ISBN : 1316583902
The term 'transport phenomena' describes the fundamental processes of momentum, energy, and mass transfer. This text provides a thorough discussion of transport phenomena, laying the foundation for understanding a wide variety of operations used by chemical engineers. The book is arranged in three parallel parts covering the major topics of momentum, energy, and mass transfer. Each part begins with the theory, followed by illustrations of the way the theory can be used to obtain fairly complete solutions, and concludes with the four most common types of averaging used to obtain approximate solutions. A broad range of technologically important examples, as well as numerous exercises, are provided throughout the text. Based on the author's extensive teaching experience, a suggested lecture outline is also included. This book is intended for first-year graduate engineering students; it will be an equally useful reference for researchers in this field.