Transport Phenomena in Medicine and Biology
Author : Marshall Min-Shing Lih
Publisher : John Wiley & Sons
Page : 560 pages
File Size : 42,71 MB
Release : 1975
Category : Science
ISBN :
Author : Marshall Min-Shing Lih
Publisher : John Wiley & Sons
Page : 560 pages
File Size : 42,71 MB
Release : 1975
Category : Science
ISBN :
Author : Robert A. Peattie
Publisher : CRC Press
Page : 195 pages
File Size : 34,28 MB
Release : 2012-11-20
Category : Medical
ISBN : 1439874638
Design, analysis and simulation of tissue constructs is an integral part of the ever-evolving field of biomedical engineering. The study of reaction kinetics, particularly when coupled with complex physical phenomena such as the transport of heat, mass and momentum, is required to determine or predict performance of biologically-based systems wheth
Author : Liqiu Wang
Publisher : Springer Science & Business Media
Page : 250 pages
File Size : 33,17 MB
Release : 2009-10-15
Category : Science
ISBN : 3642026907
The term transport phenomena is used to describe processes in which mass, momentum, energy and entropy move about in matter. Advances in Transport Phenomena provide state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport p- nomena, from scientific enquiries to practical applications. The annual review series intends to fill the information gap between regularly published journals and university-level textbooks by providing in-depth review articles over a broader scope than in journals. The authoritative articles, contributed by international- leading scientists and practitioners, establish the state of the art, disseminate the latest research discoveries, serve as a central source of reference for fundamentals and applications of transport phenomena, and provide potential textbooks to senior undergraduate and graduate students. The series covers mass transfer, fluid mechanics, heat transfer and thermo- namics. The 2009 volume contains the four articles on biomedical, environmental and nanoscale transports. The editorial board expresses its appreciation to the c- tributing authors and reviewers who have maintained the standard associated with Advances in Transport Phenomena. We also would like to acknowledge the efforts of the staff at Springer who have made the professional and attractive pr- entation of the volume. Serial Editorial Board Editor-in-Chief Professor L. Q. Wang The University of Hong Kong, Hong Kong; lqwang@hku. hk Editors Professor A. R. Balakrishnan Indian Institute of Technology Madras, India Professor A.
Author : George A. Truskey
Publisher : Prentice Hall
Page : 889 pages
File Size : 43,94 MB
Release : 2009
Category : Biological systems
ISBN : 0131569880
For one-semester, advanced undergraduate/graduate courses in Biotransport Engineering. Presenting engineering fundamentals and biological applications in a unified way, this text provides students with the skills necessary to develop and critically analyze models of biological transport and reaction processes. It covers topics in fluid mechanics, mass transport, and biochemical interactions, with engineering concepts motivated by specific biological problems.
Author : Morton H. Friedman
Publisher : Springer Science & Business Media
Page : 274 pages
File Size : 44,43 MB
Release : 2012-12-06
Category : Science
ISBN : 3662024675
This text is designed for a first course in biological mass transport, and the material in it is presented at a level that is appropriate to advanced undergraduates or early graduate level students. Its orientation is somewhat more physical and mathematical than a biology or standard physiology text, reflecting its origins in a transport course that I teach to undergraduate (and occasional graduate) biomedical engineering students in the Whiting School of Engineering at Johns Hopkins. The audience for my cours- and presumably for this text - also includes chemical engineering undergraduates concentrating in biotechnology, and graduate students in biophysics. The organization of this book differs from most texts that at tempt to present an engineering approach to biological transport. What distinguishes biological transport from other mass transfer processes is the fact that biological transport is biological. Thus, we do not start with the engineering principles of mass transport (which are well presented elsewhere) and then seek biological ap plications of these principles; rather, we begin with the biological processes themselves, and then develop the tools that are needed to describe them. As a result, more physiology is presented in this text than is often found in books dealing with engineering applica tions in the life sciences.
Author : Sid M. Becker
Publisher : Academic Press
Page : 428 pages
File Size : 40,44 MB
Release : 2014-12-31
Category : Science
ISBN : 0124079008
Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. - Provides a wide range of biological and clinical applications of fluid flow and heat transfer in biomedical technology - Covers topics such as electrokinetic transport, electroporation of cells and tissue dialysis, inert solute transport (insulin), thermal ablation of cancerous tissue, respiratory therapies, and associated medical technologies - Reviews the most recent advances in modeling techniques
Author : Sid M. Becker
Publisher : Newnes
Page : 575 pages
File Size : 39,34 MB
Release : 2013-05-21
Category : Technology & Engineering
ISBN : 0123978491
Transport in Biological Media is a solid resource of mathematical models for researchers across a broad range of scientific and engineering problems such as the effects of drug delivery, chemotherapy, or insulin intake to interpret transport experiments in areas of cutting edge biological research. A wide range of emerging theoretical and experimental mathematical methodologies are offered by biological topic to appeal to individual researchers to assist them in solving problems in their specific area of research. Researchers in biology, biophysics, biomathematics, chemistry, engineers and clinical fields specific to transport modeling will find this resource indispensible. - Provides detailed mathematical model development to interpret experiments and provides current modeling practices - Provides a wide range of biological and clinical applications - Includes physiological descriptions of models
Author : L. Gary Leal
Publisher : Cambridge University Press
Page : 7 pages
File Size : 42,97 MB
Release : 2007-06-18
Category : Technology & Engineering
ISBN : 1139462067
Advanced Transport Phenomena is ideal as a graduate textbook. It contains a detailed discussion of modern analytic methods for the solution of fluid mechanics and heat and mass transfer problems, focusing on approximations based on scaling and asymptotic methods, beginning with the derivation of basic equations and boundary conditions and concluding with linear stability theory. Also covered are unidirectional flows, lubrication and thin-film theory, creeping flows, boundary layer theory, and convective heat and mass transport at high and low Reynolds numbers. The emphasis is on basic physics, scaling and nondimensionalization, and approximations that can be used to obtain solutions that are due either to geometric simplifications, or large or small values of dimensionless parameters. The author emphasizes setting up problems and extracting as much information as possible short of obtaining detailed solutions of differential equations. The book also focuses on the solutions of representative problems. This reflects the book's goal of teaching readers to think about the solution of transport problems.
Author : Majid Ghassemi
Publisher : Academic Press
Page : 162 pages
File Size : 49,44 MB
Release : 2017-03-15
Category : Science
ISBN : 0128038527
Nano and Bio Heat Transfer and Fluid Flow focuses on the use of nanoparticles for bio application and bio-fluidics from an engineering perspective. It introduces the mechanisms underlying thermal and fluid interaction of nanoparticles with biological systems. This book will help readers translate theory into real world applications, such as drug delivery and lab-on-a-chip. The content covers how transport at the nano-scale differs from the macro-scale, also discussing what complications can arise in a biologic system at the nano-scale. It is ideal for students and early career researchers, engineers conducting experimental work on relevant applications, or those who develop computer models to investigate/design these systems. Content coverage includes biofluid mechanics, transport phenomena, micro/nano fluid flows, and heat transfer. - Discusses nanoparticle applications in drug delivery - Covers the engineering fundamentals of bio heat transfer and fluid flow - Explains how to simulate, analyze, and evaluate the transportation of heat and mass problems in bio-systems
Author : Ashim K. Datta
Publisher : CRC Press
Page : 474 pages
File Size : 15,97 MB
Release : 2002-03-21
Category : Medical
ISBN : 0824744381
Providing a foundation in heat and mass transport, this book covers engineering principles of heat and mass transfer. The author discusses biological content, context, and parameter regimes and supplies practical applications for biological and biomedical engineering, industrial food processing, environmental control, and waste management. The book contains end-of-chapter problems and sections highlighting key concepts and important terminology It offers cross-references for easy access to related areas and relevant formulas, as well as detailed examples of transport phenomena, and descriptions of physical processes. It covers mechanisms of diffusion, capillarity, convection, and dispersion.