Transport Processes in Macroscopically Disordered Media


Book Description

This book reflects on recent advances in the understanding of percolation systems to present a wide range of transport phenomena in inhomogeneous disordered systems. Further developments in the theory of macroscopically inhomogeneous media are also addressed. These developments include galvano-electric, thermoelectric, elastic properties, 1/f noise and higher current momenta, Anderson localization, and harmonic generation in composites in the vicinity of the percolation threshold. The book describes how one can find effective characteristics, such as conductivity, dielectric permittivity, magnetic permeability, with knowledge of the distribution of different components constituting an inhomogeneous medium. Considered are a wide range of recent studies dedicated to the elucidation of physical properties of macroscopically disordered systems. Aimed at researchers and advanced students, it contains a straightforward set of useful tools which will allow the reader to derive the basic physical properties of complicated systems together with their corresponding qualitative characteristics and functional dependencies.




Advances in Mechanics of Microstructured Media and Structures


Book Description

This book is an homage to the pioneering works of E. Aero and G. Maugin in the area of analytical description of generalized continua. It presents a collection of contributions on micropolar, micromorphic and strain gradient media, media with internal variables, metamaterials, beam lattices, liquid crystals, and others. The main focus is on wave propagation, stability problems, homogenization, and relations between discrete and continuous models.




Approximate Models of Mechanics of Composites


Book Description

Approximate Models of Mechanics of Composites: An Asymptotic Approach is an essential guide to constructing asymptotic models and mathematical methods to correctly identify the mechanical behavior of composites. It provides methodology for predicting and evaluating composite behavior in various structures, leading to accurate mathematical and physical assessments. The book estimates the error of approximations through comparing asymptotic solutions with the results of numerical and analytical solutions to gain a holistic view of the data. The authors have developed asymptotic models based on mathematical and physical rigorous approaches, which include three-phase models of fibrous composites, a modernized three-phase composite model with cylindrical inclusions, and models of two-dimensional composites of hexagonal structure. Also covered are two-phase models of composites related to the Maxwell formula and a percolation transition model for elastic problems based on the self-consistency method and Padé approximations. By obtaining analytical expressions to effectively characterize composite materials, their physical and geometric parameters can be accurately assessed. This book suits engineers and students working in material science, mechanical engineering, physics, and mathematics, as well as composite materials in industries such as construction, transport, aerospace, and chemical engineering.




Renewable Energy


Book Description

The demand for secure, affordable and clean energy is a priority call to humanity. Challenges associated with conventional energy resources, such as depletion of fossil fuels, high costs and associated greenhouse gas emissions, have stimulated interests in renewable energy resources. For instance, there have been clear gaps and rushed thoughts about replacing fossil-fuel driven engines with electric vehicles without long-term plans for energy security and recycling approaches. This book aims to provide a clear vision to scientists, industrialists and policy makers on renewable energy resources, predicted challenges and emerging applications. It can be used to help produce new technologies for sustainable, connected and harvested energy. A clear response to economic growth and clean environment demands is also illustrated.




Asymptotical Mechanics of Composites


Book Description

In this book the authors show that it is possible to construct efficient computationally oriented models of multi-parameter complex systems by using asymptotic methods, which can, owing to their simplicity, be directly used for controlling processes arising in connection with composite material systems. The book focuses on this asymptotic-modeling-based approach because it allows us to define the most important out of numerous parameters describing the system, or, in other words, the asymptotic methods allow us to estimate the sensitivity of the system parameters. Further, the book addresses the construction of nonlocal and higher-order homogenized models. Local fields on the micro-level and the influence of so-called non-ideal contact between the matrix and inclusions are modeled and investigated. The book then studies composites with non-regular structure and cluster type composite conductivity, and analyzes edge effects in fiber composite materials. Transition of load from a fiber to a matrix for elastic and viscoelastic composites, various types of fiber composite fractures, and buckling of fibers in fiber-reinforced composites is also investigated. Last but not least, the book includes studies on perforated membranes, plates, and shells, as well as the asymptotic modeling of imperfect nonlinear interfaces.




Physics of Thin-Film Photovoltaics


Book Description

PHYSICS OF THIN-FILM PHOTOVOLTAICS Tackling one of the hottest topics in renewables, thin-film photovoltaics, the authors present the latest updates, technologies, and applications, offering the most up-to-date and thorough coverage available to the engineer, scientist, or student. It appears rather paradoxical that thin-film photovoltaics (PVs) are made of materials that seem unacceptable from the classical PV perspective, and yet they often outperform classical PV. This exciting new volume solves that paradox by switching to a new physics paradigm. Many concepts here fall beyond the classical PV scope. The differences lie in device thinness (microns instead of millimeters) and morphology (non-crystalline instead of crystalline). In such structures, the charge carriers can reach electrodes without recombination. On the other hand, thin disordered structures render a possibility of detrimental lateral nonuniformities (“recombination highways”), and their energy spectra give rise to new recombination modes. The mechanisms of thermal exchange and device degradation are correspondingly unique. The overall objective of this book is to give a self-contained in-depth discussion of the physics of thin-film systems in a manner accessible to both researchers and students. It covers most aspects of the physics of thin-film PV, including device operations, material structure and parameters, thin-film junction formation, analytical and numerical modeling, concepts of large area effects and lateral non-uniformities, physics of shunting (both shunt growth and effects), and device degradation. Also, it reviews a variety of physical diagnostic techniques proven with thin-film PV. Whether for the veteran engineer or the student, this is a must-have for any library. This outstanding new volume: Covers not only the state-of-the-art of thin-film photovoltaics, but also the basics, making this volume useful not just to the veteran engineer, but the new-hire or student as well Offers a comprehensive coverage of thin-film photovoltaics, including operations, modeling, non-uniformities, piezo-effects, and degradation Includes novel concepts and applications never presented in book format before Is an essential reference, not just for the engineer, scientist, and student, but the unassuming level of presentation also makes it accessible to readers with a limited physics background Is filled with workable examples and designs that are helpful for practical applications Is useful as a textbook for researchers, students, and faculty for understanding new ideas in this rapidly emerging field Audience: Industrial professionals in photovoltaics, such as engineers, managers, research and development staff, technicians, government and private research labs; also academic and research universities, such as physics, chemistry, and electrical engineering departments, and graduate and undergraduate students studying electronic devices, semiconductors, and energy disciplines




Novel Magnetic Nanostructures


Book Description

Novel Magnetic Nanostructures: Unique Properties and Applications reviews the synthesis, design, characterization and unique properties of emerging nanostructured magnetic materials. It discusses the most promising and relevant applications, including data storage, spintronics and biomedical applications. Properties investigated include electronic, self-assembling, multifunctional, and magnetic properties, along with magnetic phenomena. Structures range from magnetic nanoclusters, nanoparticles, and nanowires, to multilayers and self-assembling nanosystems. This book provides a better understanding of the static and dynamic magnetism in new nanostructures for important applications. - Provides an overview of the latest research on novel magnetic nanostructures, including molecular nanomagnets, metallacrown magnetic nanostructures, magnetic dendrimers, self-assembling magnetic structures, multifunctional nanostructures, and much more - Reviews the synthesis, design, characterization and detection of useful properties in new magnetic nanostructures - Highlights the most relevant applications, including spintronic, data storage and biomedical applications




Flow and Transport in Porous Media and Fractured Rock


Book Description

In this standard reference of the field, theoretical and experimental approaches to flow, hydrodynamic dispersion, and miscible displacements in porous media and fractured rock are considered. Two different approaches are discussed and contrasted with each other. The first approach is based on the classical equations of flow and transport, called 'continuum models'. The second approach is based on modern methods of statistical physics of disordered media; that is, on 'discrete models', which have become increasingly popular over the past 15 years. The book is unique in its scope, since (1) there is currently no book that compares the two approaches, and covers all important aspects of porous media problems; and (2) includes discussion of fractured rocks, which so far has been treated as a separate subject. Portions of the book would be suitable for an advanced undergraduate course. The book will be ideal for graduate courses on the subject, and can be used by chemical, petroleum, civil, environmental engineers, and geologists, as well as physicists, applied physicist and allied scientists that deal with various porous media problems.




Instabilities and Nonequilibrium Structures IX


Book Description

This volume contains a selection of lectures and seminars given at the Ninth International Workshop on Instabilities and Nonequilibrium Structures which took place in Via del Mar, Chile, in December 2001. This book consists of two parts, the first one has three lectures written by Professors H.R. Brand, M. Moreau and L.S. Tuckerman. H.R. Brand gives an overview about reorientation and undulation instabilities in liquid crystals, M. Moreau presents recent results on biased tracer diffusion in lattice gases, finally, L.S. Tuckerman summarizes some numerical methods used in bifurcation problems. The second part consists of a collection of selected seminars which cover different topics in nonlinear physics, from an experimental, numerical and theoretical point of view. This book should appeal to mathematicians, physicists and engineers interested in dynamical systems, statistical mechanics, and nonequilibrium systems.




Convective Heat and Mass Transfer in Porous Media


Book Description

The rapid growth of literature on convective heat and mass transfer through porous media has brought both engineering and fundamental knowledge to a new state of completeness and depth. Additionally, several new questions of fundamental merit have arisen in several areas which bear direct relation to further advancement of basic knowledge and applications in this field. For example, the growth of fundamental heat transfer data and correlations for engineering use for saturated media has now reached the point where the relations for heat transfer coefficients and flow parameters are known well enough for design purposes. Multiple flow field regimes in natural convection have been identified in several important enclosure geometries. New questions have arisen on the nature of equations being used in theoretical studies, i. e. , the Validity of Darcy assumption is being brought into question; Wall effects in high and low velocity flow fields have been found to play a role in predicting transport coefficients; The formulation of transport problems in fractured media are being investigated as both an extension of those in a homogeneous medium and for application in engineering systems in geologic media and problems on saturated media are being addressed to determine their proper formulation and solution. The long standing problem of how to adequately formulate and solve problems of multi-phase heat and mass transfer in heterogeneous media is important in the technologies of chemical reactor engineering and enhanced oil recovery.