Transverse Cracking of Asphalt Pavements


Book Description

This report summarizes the analysis of transverse cracking in asphalt pavement by a five state study team from Iowa, Kansas, Nebraska, North Dakota, and Oklahoma. The study was initiated under the sponsorship of the Federal Highway Administration and four evaluation conferences were held during the course of the study. Each state conducted a crack inventory on their asphalt pavement. An effort was made to correlate this inventory with numerous factors that were considered to be pertinent to the cracking problem. One state did indicate that there was a correlation between transverse cracking severity and the subsurface geology. The other states were unable to identify any significant factors as being the primary contributors. The analysis of the problem was divided into, (1) mix design, (2) maintenance, and (3) 3R rehabilitation. Many potential factors to be considered were identified under each of these three study divisions.







The Asphalt Handbook


Book Description

For more than 70 years, "MS-4" has served the asphalt industry as its primary reference manual. This new, expanded edition showcases the advances in asphalt technology, covering such topics as superpave courses, asphalt binder, quality control, and rehabilitation of concrete pavements with HMA.




Asphalt Pavements


Book Description

Asphalt Pavements provides the know-how behind the design, production and maintenance of asphalt pavements and parking lots. Incorporating the latest technology, this book is the first to focus primarily on the design, production and maintenance of low-volume roads and parking areas. Special attention is given to determining the traffic capacity, required thickness and asphalt mixture type for parking applications. Topics covered include: material information such as binder properties, testing grading and selection; construction information such as mixing plant operation, proportioning, mixture placement and compaction; and design information such as thickness and mixture design methods and guidelines on applying these to highways, city streets and parking Areas. It is an essential practical guide aimed at those engineers and architects who are not directly involved in the asphalt industry, but who nonetheless need to have a good general knowledge of the subject. Asphalt Pavements provides a novice with enough information to completely design, construct and specify an asphalt pavement.




Asphalt in Pavement Preservation and Maintenance


Book Description

This updated manual provides practical information on methods, equipment, and terminology applying to the use of asphalt in maintenance of all types of pavement structures. Topics addressed include pavement management systems, types of maintenance, rehabilitation treatments, analysis systems, pavement evaluation, distresses, materials, crack sealing/filling, patching, surface treatments, and asphalt maintenance of PCC pavements




AASHTO Guide for Design of Pavement Structures, 1993


Book Description

Design related project level pavement management - Economic evaluation of alternative pavement design strategies - Reliability / - Pavement design procedures for new construction or reconstruction : Design requirements - Highway pavement structural design - Low-volume road design / - Pavement design procedures for rehabilitation of existing pavements : Rehabilitation concepts - Guides for field data collection - Rehabilitation methods other than overlay - Rehabilitation methods with overlays / - Mechanistic-empirical design procedures.




7th RILEM International Conference on Cracking in Pavements


Book Description

In the recent past, new materials, laboratory and in-situ testing methods and construction techniques have been introduced. In addition, modern computational techniques such as the finite element method enable the utilization of sophisticated constitutive models for realistic model-based predictions of the response of pavements. The 7th RILEM International Conference on Cracking of Pavements provided an international forum for the exchange of ideas, information and knowledge amongst experts involved in computational analysis, material production, experimental characterization, design and construction of pavements. All submitted contributions were subjected to an exhaustive refereed peer review procedure by the Scientific Committee, the Editors and a large group of international experts in the topic. On the basis of their recommendations, 129 contributions which best suited the goals and the objectives of the Conference were chosen for presentation and inclusion in the Proceedings. The strong message that emanates from the accepted contributions is that, by accounting for the idiosyncrasies of the response of pavement engineering materials, modern sophisticated constitutive models in combination with new experimental material characterization and construction techniques provide a powerful arsenal for understanding and designing against the mechanisms and the processes causing cracking and pavement response deterioration. As such they enable the adoption of truly "mechanistic" design methodologies. The papers represent the following topics: Laboratory evaluation of asphalt concrete cracking potential; Pavement cracking detection; Field investigation of pavement cracking; Pavement cracking modeling response, crack analysis and damage prediction; Performance of concrete pavements and white toppings; Fatigue cracking and damage characterization of asphalt concrete; Evaluation of the effectiveness of asphalt concrete modification; Crack growth parameters and mechanisms; Evaluation, quantification and modeling of asphalt healing properties; Reinforcement and interlayer systems for crack mitigation; Thermal and low temperature cracking of pavements; and Cracking propensity of WMA and recycled asphalts.




Airfield and Highway Pavement 2013


Book Description

The proceedings of the 2013 Airfield & Highway Pavement Conference: Sustainable and Efficient Pavements, held in Los Angeles, California, June 9-12, 2013 contains 123 peer-reviewed papers that focus on the latest developments and cutting-edge technological improvements in pavements and pavement sustainability. Topics include: advanced modeling, design, and analysis of pavements; construction and rehabilitation techniques; asphalt characterization and testing; recycling materials in pavements; pavement quality control/quality assurance; pavement sustainability and life-cycle assessment; nondestructive testing and evaluation; pavement management systems; and airfield and pavement case studies. This proceedings will be of interest to researchers, designers, project/construction managers, and contractors.







Structural Behavior of Asphalt Pavements


Book Description

Structural Behavior of Asphalt Pavements provides engineers and researchers with a detailed guide to the structural behavioral dynamics of asphalt pavement including: pavement temperature distribution, mechanistic response of pavement structure under the application of heavy vehicles, distress mechanism of pavement, and pavement deterioration performance and dynamic equations. An authoritative guide for understanding the key mechanisms for creating longer lasting pavements, Structural Behavior of Asphalt Pavements describes the intrinsic consistency between macroscopic performance and microscopic response, structure and material, as well as global and local performances, and demonstrates the process of pavement analyses and designs, approaching science from empirical analyses. - Analyzes the external and internal factors influencing pavement temperature field, and provide a review of existing pavement temperature prediction models - Introduces a "Bridge Principle through which pavement performance and fatigue properties are consolidated - Defines the intrinsic consistency between macroscopic performance and microscopic response, structure and material, as well as global and local performance - Summaries the mechanistic response of pavement structure under the application of heavy vehicle, distress mechanism of pavement, pavement deterioration performance and dynamic equations, and life cycle analysis of pavement