Trends in Quorum Sensing and Quorum Quenching


Book Description

The book on Trends in Quorum Sensing and Quorum Quenching: New Perspectives and Applications focuses on the recent advances in the field of quorum sensing in bacteria and the novel strategies developed for quorum sensing inhibition. The topics covered are multidisciplinary and wide-ranging,and includes quorum sensing phenomenon in pathogenic bacteria, food spoilers, and agriculturally relevant bacteria. The applications of quorum sensing inhibitors such as small molecules, bioactives, natural compounds, and quorum quenching enzymes in controlling bacterial infections in clinical settings, agriculture and aquaculture are discussed. The potential use of quorum quenching enzymes for mitigating biofouling is also covered. Special focus is given to exploring quorum sensing inhibitors from microbes and flora inhabiting biodiversity rich regions including tropical rain forests and marine environments. Key features: Covers the fundamental aspects, the progress and challenges in the field of quorum sensing and quorum quenching Reviews quorum sensing in Gram-positive and Gram-negative bacteria of clinical, agricultural, and industrial relevance Discusses the application and future trends of quorum sensing inhibitors from lab to clinical and environmental settings Provides comprehensive coverage on molecular mechanisms in bacterial signaling




Quorum Sensing vs Quorum Quenching: A Battle with No End in Sight


Book Description

Microbial relationships with all life forms can be as free living, symbiotic or pathogenic. Human beings harbor 10 times more microbial cells than their own. Bacteria are found on the skin surface, in the gut and other body parts. Bacteria causing diseases are the most worrisome. Most of the infectious diseases are caused by bacterial pathogens with an ability to form biofilm. Bacteria within the biofilm are up to 1000 times more resistant to antibiotics. This has taken a more serious turn with the evolution of multiple drug resistant bacteria. Health Departments are making efforts to reduce high mortality and morbidity in man caused by them. Bacterial Quorum sensing (QS), a cell density dependent phenomenon is responsible for a wide range of expressions such as pathogenesis, biofilm formation, competence, sporulation, nitrogen fixation, etc. Majority of these organisms that are important for medical, agriculture, aquaculture, water treatment and remediation, archaeological departments are: Aeromonas, Acinetobacter, Bacillus, Clostridia, Enterococcus, Pseudomonas, Vibrio and Yersinia spp. Biosensors and models have been developed to detect QS systems. Strategies for inhibiting QS system through natural and synthetic compounds have been presented here. The biotechnological applications of QS inhibitors (QSIs) in diverse areas have also been dealt with. Although QSIs do not affect growth and are less likely to impose selective pressure on bacteria, however, a few reports have raised doubts on the fate of QSIs. This book addresses a few questions. Will bacteria develop mechanisms to evade QSIs? Are we watching yet another defeat at the hands of bacteria? Or will we be acting intelligently and survive the onslaughts of this Never Ending battle?




Implication of Quorum Sensing System in Biofilm Formation and Virulence


Book Description

This book illustrates the importance and significance of Quorum sensing (QS), it’s critical roles in regulating diverse cellular functions in microbes, including bioluminescence, virulence, pathogenesis, gene expression, biofilm formation and antibiotic resistance. Microbes can coordinate population behavior with small molecules called autoinducers (AHL) which serves as a signal of cellular population density, triggering new patterns of gene expression for mounting virulence and pathogenesis. Therefore, these microbes have the competence to coordinate and regulate explicit sets of genes by sensing and communicating amongst themselves utilizing variety of signals. This book descry emphasizes on how bacteria can coordinate an activity and synchronize their response to external signals and regulate gene expression. The chapters of the book provide the recent advancements on various functional aspects of QS systems in different gram positive and gram negative organisms. Finally, the book also elucidates a comprehensive yet a representative description of a large number of challenges associated with quorum sensing signal molecules viz. virulence, pathogenesis, antibiotic synthesis, biosurfactants production, persister cells, cell signaling and biofilms, intra and inter-species communications, host-pathogen interactions, social interactions & swarming migration in biofilms.




Quorum Sensing


Book Description

New developments in researching quorum sensing Microbial growth affects industries as diverse as agriculture, engineering, and medicine, to name a few. As more precise solutions are needed for modern challenges, researchers must understand the mechanisms of microbial growth. Quorum sensing (QS) is an essential part of microbial growth, and this work contains key areas such as signal molecules; mechanisms of signal transfer, role, and type of signal receptors; quorum quenching; characterization of microbial plasmids in quorum sensing; and novel and underexplored molecules involved in QS, along with therapeutic roles of quorum sensing inhibitors. This volume is perfect for researchers working on microbiology or biotechnology.




Implication of Quorum Sensing and Biofilm Formation in Medicine, Agriculture and Food Industry


Book Description

The book illustrates the role of quorum sensing in the food industry, agriculture, veterinary sciences, and medicine. It highlights the importance of quorum sensing in regulating diverse cellular functions in microbes, including virulence, pathogenesis, controlled-gene expression systems, and antibiotic resistance. This book also describes the role of quorum sensing in survival behavior and antibiotic resistance in bacteria. Further, it reviews the major role played by quorum sensing in food spoilage, biofilm formation, and food-related pathogenesis. It also explores the methods for the detection and quantification of quorum sensing signals. It also presents antimicrobial and anti-quorum sensing activities of medicinal plants. Finally, the book elucidates a comprehensive yet representative description of basic and applied aspects of quorum sensing inhibitors. This book serves an ideal guide for researchers to understand the implications of quorum sensing in the food industry, medicine, and agriculture.




Biocommunication of Archaea


Book Description

Archaea represent a third domain of life with unique properties not found in the other domains. Archaea actively compete for environmental resources. They perceive themselves and can distinguish between ‘self’ and ‘non-self’. They process and evaluate available information and then modify their behaviour accordingly. They assess their surroundings, estimate how much energy they need for particular goals, and then realize the optimum variant. These highly diverse competences show us that this is possible owing to sign(aling)- mediated communication processes within archaeal cells (intra-organismic), between the same, related and different archaeal species (interorganismic), and between archaea and nonarchaeal organisms (transorganismic). This is crucial in coordinating growth and development, shape and dynamics. Such communication must function both on the local level and between widely separated colony parts. This allows archaea to coordinate appropriate response behaviors in a differentiated manner to their current developmental status and physiological influences. This book will orientate further investigations on how archaeal ecosphere inhabitants communicate with each other to coordinate their behavioral patterns and whats the role of viruses in this highly dynamic interactional networks.




Microbial Technology for Health and Environment


Book Description

Rampant industrialization has caused high levels of contamination by various toxic chemicals in our water bodies, which is a matter of concern in terms of ecosystems, as well as human and animal health. Polluted wastewater can contaminate drinking water and is also is a causal factor for bio-magnification of heavy metals into our food cycle. In the last decade, several methodologies have been adopted to clean the wastewaters, and among these, microbial remediation has emerged as an effective technology. Several variants of microbial technologies have been developed for wastewater treatment and biodegradation specific to the industry, type of waste and toxicity of the chemicals. This book describes the recent advances in microbial degradation and microbial remediation of various xenobiotic compounds in soil and wastewater. It also explains various modern microbial technologies for biodegradation and wastewater treatment. It covers various microbial technologies for wastewater treatment, biodegradation, bioremediation and solid waste management. Gathering contributions from leading international it focuses on the status quo in industrial wastewater treatment and its biodegradation. The book is intended for researchers in the field of industrial wastewater, students of environmental sciences and practitioners in water pollution abatement.




Microbial Cell Factories Engineering for Production of Biomolecules


Book Description

Microbial Cell Factories Engineering for Production of Biomolecules presents a compilation of chapters written by eminent scientists worldwide. Sections cover major tools and technologies for DNA synthesis, design of biosynthetic pathways, synthetic biology tools, biosensors, cell-free systems, computer-aided design, OMICS tools, CRISPR/Cas systems, and many more. Although it is not easy to find relevant information collated in a single volume, the book covers the production of a wide range of biomolecules from several MCFs, including Escherichia coli, Bacillus subtilis, Pseudomonas putida, Streptomyces, Corynebacterium, Cyanobacteria, Saccharomyces cerevisiae, Pichia pastoris and Yarrowia lipolytica, and algae, among many others. This will be an excellent platform from which scientific knowledge can grow and widen in MCF engineering research for the production of biomolecules. Needless to say, the book is a valuable source of information not only for researchers designing cell factories, but also for students, metabolic engineers, synthetic biologists, genome engineers, industrialists, stakeholders and policymakers interested in harnessing the potential of MCFs in several fields. - Offers basic understanding and a clear picture of various MCFs - Explains several tools and technologies, including DNA synthesis, synthetic biology tools, genome editing, biosensors, computer-aided design, and OMICS tools, among others - Harnesses the potential of engineered MCFs to produce a wide range of biomolecules for industrial, therapeutic, pharmaceutical, nutraceutical and biotechnological applications - Highlights the advances, challenges, and future opportunities in designing MCFs




Fundamentals of, and Applications Based on, Quorum Sensing and Quorum Sensing Interference 


Book Description

Background Bacteria use quorum sensing (QS) circuits to coordinate various activities (among which biofilm formation and the expression of virulence factors) based on the presence of signaling molecules. Different families of signal molecules have been identified in Gram positive and Gram negative bacteria (e.g. autoinducer peptides and acyl homoserine lactones). Similarly, different quorum sensing antagonists interfering with these system have been found in nature, promoting a new and promising field of research, quorum sensing interference. One of the most intensively studied applications of quorum sensing interference is its use as an alternative or synergycally with antibiotics to fight (antibiotic-resistant) bacterial pathogens. Many studies have been published claiming quorum sensing inhibitory activity of natural and synthetic compounds. However, after decades of research, several questions regarding the suitability of this approach to fight bacterial pathogens remain unanswered, including the risk that pathogens will develop resistance against quorum quenching. Meanwhile, the interest in quorum sensing has increased considerably, and this has broadened the fields where it can find biotechnological, environmental and industrial applications, such as anti biofouling, steering fermentations, bioremediation and wastewater treatment. Goal and scope The goal of this Research Topic is to broaden the knowledge of the phenotypes regulated by quorum sensing and the advances in quorum sensing interference. Deciphering microorganism language and the different phenotypes regulated by microbial signalling systems is a frontier for the development of new tools for the management of microorganisms to fulfil human needs with a broad application in different areas such as medicine, environmental sciences and industry.




Antibiotic Drug Resistance


Book Description

This book presents a thorough and authoritative overview of the multifaceted field of antibiotic science – offering guidance to translate research into tools for prevention, diagnosis, and treatment of infectious diseases. Provides readers with knowledge about the broad field of drug resistance Offers guidance to translate research into tools for prevention, diagnosis, and treatment of infectious diseases Links strategies to analyze microbes to the development of new drugs, socioeconomic impacts to therapeutic strategies, and public policies to antibiotic-resistance-prevention strategies