Tunable Lasers Handbook


Book Description

Many laser applications depend on the ability of a particular laser to be frequency tunable. Among the many different types of frequency tunable lasers are: dye lasers, excimer lasers, and semiconductor lasers. Thisbook gives active researchers and engineers the practical information they need to choose an appropriate tunable laser for their particular applications. - Presents a unified and integrated perspective on tunable lasers - Includes sources spanning the electromagnetic spectrum from the UV to the FIR - Contains 182 figures and 68 tables - Provides coverage of optical parametric oscillators and tunable gas, liquid, solid state, and semiconductor lasers




Tunable Laser Applications


Book Description

Broadly tunable lasers continue to have a tremendous impact in many and diverse fields of science and technology. From a renaissance in laser spectroscopy to Bose-Einstein condensation, the one nexus is the tunable laser. Tunable Laser Applications describes the physics and architectures of widely applied tunable laser sources. Fully updated and ex




Tunable External Cavity Diode Lasers


Book Description

This is the first book on tunable external cavity semiconductor diode lasers, providing an up-to-date survey on the physics, technology, and performance of widely applicable coherent radiation sources of tunable external cavity diode lasers. The purpose is to provide a thorough account of the state-of-the-art of tunable external cavity diode lasers which is achieved by combining this account with basic concepts of semiconductor diode lasers and its tunability with monolithic structures. The practical and accessible information in this volume will enable the reader to study external cavity diode laser, to build up the systems of external cavity diode laser as well as to develop advanced systems for their particular applications. This book will appeal to undergraduate and graduate students, scientists and engineers alike.




Solid-State Mid-Infrared Laser Sources


Book Description

The book describes the most advanced techniques for generating coherent light in the mid-infrared region of the spectrum. These techniques represent diverse areas of photonics and include heterojunction semiconductor lasers, quantum cascade lasers, tunable crystalline lasers, fiber lasers, Raman lasers, and optical parametric laser sources. Offering authoritative reviews by internationally recognized experts, the book provides a wealth of information on the essential principles and methods of the generation of coherent mid-infrared light and on some of its applications. The instructive nature of the book makes it an excellent text for physicists and practicing engineers who want to use mid-infrared laser sources in spectroscopy, medicine, remote sensing and other fields, and for researchers in various disciplines requiring a broad introduction to the subject.










Organic Solid-State Lasers


Book Description

Organic lasers are broadly tunable coherent sources, potentially compact, convenient and manufactured at low-costs. Appeared in the mid 60’s as solid-state alternatives for liquid dye lasers, they recently gained a new dimension after the demonstration of organic semiconductor lasers in the 90's. More recently, new perspectives appeared at the nanoscale, with organic polariton and surface plasmon lasers. After a brief reminder to laser physics, a first chapter exposes what makes organic solid-state organic lasers specific. The laser architectures used in organic lasers are then reviewed, with a state-of-the-art review of the performances of devices with regard to output power, threshold, lifetime, beam quality etc. A survey of the recent trends in the field is given, highlighting the latest developments with a special focus on the challenges remaining for achieving direct electrical pumping of organic semiconductor lasers. A last chapter covers the applications of organic solid-state lasers.




Tunable Laser Optics


Book Description

Broadly tunable lasers have had, and continue to have, an enormous impact in many and diverse fields of science and technology. From a renaissance in spectroscopy to laser guide stars and laser cooling, the nexus is the tunable laser. Tunable Laser Optics offers a transparent and comprehensive treatment of the physics of tunable laser optics based on a detailed description of first principles. Authored by a leading expert in the field, the book covers the optics and optical principles needed to build lasers, the optics instrumentation necessary to characterize laser emission, and laser-based optical instrumentation, addressing key topics such as Dirac’s notation, the interferometric equation, the uncertainty principle, pulse compression, and tunable narrow-linewidth lasers. This revised, expanded, and improved Second Edition: Contains new and additional material on tunable lasers and quantum optics Explains the first principles of tunable laser optics in a clear and concise manner Presents an explicit exposition of the relevant theory, without the use of short cuts Employs numerous examples, case studies, and figures to illustrate important concepts Includes carefully designed problems of direct practical significance to stimulate application Emphasizing the utilitarian aspects of the optics and theory, Tunable Laser Optics, Second Edition provides valuable insight into the optics and the trade-offs involved in the design and construction of tunable lasers and optical devices. It makes an ideal textbook for advanced undergraduate-level and graduate-level optics courses for physics and engineering students, as well as a handy reference for researchers and experimentalists.




Solid-State Lasers


Book Description

Koechner's well-known ‘bible’ on solid-state laser engineering is now available in an accessible format at the graduate level. Numerous exercises with hints for solution, new text and updated material where needed make this text very accessible.




Diode Lasers and Photonic Integrated Circuits


Book Description

Diode Lasers and Photonic Integrated Circuits, Second Edition provides a comprehensive treatment of optical communication technology, its principles and theory, treating students as well as experienced engineers to an in-depth exploration of this field. Diode lasers are still of significant importance in the areas of optical communication, storage, and sensing. Using the the same well received theoretical foundations of the first edition, the Second Edition now introduces timely updates in the technology and in focus of the book. After 15 years of development in the field, this book will offer brand new and updated material on GaN-based and quantum-dot lasers, photonic IC technology, detectors, modulators and SOAs, DVDs and storage, eye diagrams and BER concepts, and DFB lasers. Appendices will also be expanded to include quantum-dot issues and more on the relation between spontaneous emission and gain.