Two-Dimensional Digital Filters


Book Description

Presents basic theories, techniques, and procedures used to analyze, design, and implement two-dimensional filters; and surveys a number of applications in image and seismic data processing that demonstrate their use in real-world signal processing. For graduate students in electrical and computer e




Passive, Active, and Digital Filters


Book Description

Culled from the pages of CRC's highly successful, best-selling The Circuits and Filters Handbook, Second Edition, Passive, Active, and Digital Filters presents a sharply focused, comprehensive review of the fundamental theory behind professional applications of these complex filters. It supplies a concise, convenient reference to the key concepts, models, and equations necessary to analyze, design, and predict the behavior of large-scale systems that employ various types of filters, illustrated by frequent examples. Edited by a distinguished authority, this book emphasizes the theoretical concepts underlying the processes, behavior, and operation of these filters. More than 470 figures and tables illustrate the concepts, and where necessary, the theories, principles, and mathematics of some subjects are reviewed. Expert contributors discuss general characteristics of filters, frequency transformations, sensitivity and selectivity, low-gain active filters, higher-order filters, continuous-time integrated filters, FIR and IIR filters, and VLSI implementation of digital filters, among many other topics. Passive, Active, and Digital Filters builds a strong theoretical foundation for the design and analysis of a variety of filters, from passive to active to digital, while serving as a handy reference for experienced engineers, making it a must-have for both beginners and seasoned experts.




Digital Signal Processing 101


Book Description

Digital Signal Processing 101: Everything You Need to Know to Get Started provides a basic tutorial on digital signal processing (DSP). Beginning with discussions of numerical representation and complex numbers and exponentials, it goes on to explain difficult concepts such as sampling, aliasing, imaginary numbers, and frequency response. It does so using easy-to-understand examples and a minimum of mathematics. In addition, there is an overview of the DSP functions and implementation used in several DSP-intensive fields or applications, from error correction to CDMA mobile communication to airborne radar systems. This book is intended for those who have absolutely no previous experience with DSP, but are comfortable with high-school-level math skills. It is also for those who work in or provide components for industries that are made possible by DSP. Sample industries include wireless mobile phone and infrastructure equipment, broadcast and cable video, DSL modems, satellite communications, medical imaging, audio, radar, sonar, surveillance, and electrical motor control. - Dismayed when presented with a mass of equations as an explanation of DSP? This is the book for you! - Clear examples and a non-mathematical approach gets you up to speed with DSP - Includes an overview of the DSP functions and implementation used in typical DSP-intensive applications, including error correction, CDMA mobile communication, and radar systems




Multidimensional Signal, Image, and Video Processing and Coding


Book Description

Multidimensional Signal, Image, and Video Processing and Coding gives a concise introduction to both image and video processing, providing a balanced coverage between theory, applications and standards. It gives an introduction to both 2-D and 3-D signal processing theory, supported by an introduction to random processes and some essential results from information theory, providing the necessary foundation for a full understanding of the image and video processing concepts that follow. A significant new feature is the explanation of practical network coding methods for image and video transmission. There is also coverage of new approaches such as: super-resolution methods, non-local processing, and directional transforms. Multidimensional Signal, Image, and Video Processing and Coding also has on-line support that contains many short MATLAB programs that complement examples and exercises on multidimensional signal, image, and video processing. There are numerous short video clips showing applications in video processing and coding, plus a copy of the vidview video player for playing .yuv video files on a Windows PC and an illustration of the effect of packet loss on H.264/AVC coded bitstreams. New to this edition: - New appendices on random processes, information theory - New coverage of image analysis – edge detection, linking, clustering, and segmentation - Expanded coverage on image sensing and perception, including color spaces - Now summarizes the new MPEG coding standards: scalable video coding (SVC) and multiview video coding (MVC), in addition to coverage of H.264/AVC - Updated video processing material including new example on scalable video coding and more material on object- and region-based video coding - More on video coding for networks including practical network coding (PNC), highlighting the significant advantages of PNC for both video downloading and streaming - New coverage of super-resolution methods for image and video - Only R&D level tutorial that gives an integrated treatment of image and video processing - topics that are interconnected - New chapters on introductory random processes, information theory, and image enhancement and analysis - Coverage and discussion of the latest standards in video coding: H.264/AVC and the new scalable video standard (SVC)




Practical Digital Wireless Signals


Book Description

Do you need to know what signal type to select for a wireless application? Quickly develop a useful expertise in digital modulation with this practical guide, based on the author's experience of over thirty years in industrial design. You will understand the physical meaning behind the mathematics of wireless signals and learn the intricacies and tradeoffs in signal selection and design. Six modulation families and twelve modulation types are covered in depth, together with a quantitative ranking of relative cost incurred to implement any of twelve modulation types. Extensive discussions of the Shannon Limit, Nyquist filtering, efficiency measures and signal-to-noise measures are provided, radio wave propagation and antennas, multiple access techniques, and signal coding principles are all covered, and spread spectrum and wireless system operation requirements are presented.




Digital Signal Processing


Book Description

Digital signal processing (DSP) has been applied to a very wide range of applications. This includes voice processing, image processing, digital communications, the transfer of data over the internet, image and data compression, etc. Engineers who develop DSP applications today, and in the future, will need to address many implementation issues including mapping algorithms to computational structures, computational efficiency, power dissipation, the effects of finite precision arithmetic, throughput and hardware implementation. It is not practical to cover all of these in a single text. However, this text emphasizes the practical implementation of DSP algorithms as well as the fundamental theories and analytical procedures that form the basis for modern DSP applications. Digital Signal Processing: Principles, Algorithms and System Design provides an introduction to the principals of digital signal processing along with a balanced analytical and practical treatment of algorithms and applications for digital signal processing. It is intended to serve as a suitable text for a one semester junior or senior level undergraduate course. It is also intended for use in a following one semester first-year graduate level course in digital signal processing. It may also be used as a reference by professionals involved in the design of embedded computer systems, application specific integrated circuits or special purpose computer systems for digital signal processing, multimedia, communications, or image processing. - Covers fundamental theories and analytical procedures that form the basis of modern DSP - Shows practical implementation of DSP in software and hardware - Includes Matlab for design and implementation of signal processing algorithms and related discrete time systems - Bridges the gap between reference texts and the knowledge needed to implement DSP applications in software or hardware