Ultrafast Dynamics In Molecules, Nanostructures And Interfaces - Selected Lectures Presented At Symposium On Ultrafast Dynamics Of The 7th International Conference On Materials For Advanced Technologies


Book Description

Primary events in natural systems or devices occur on extremely short time scales, and yet determine in many cases the final performance or output. For this reason research in ultrafast science is of primary importance and impact in both fundamental research as well as its applications. This book reviews the advances in the field, addressing timely and open questions such as the role of quantum coherence in biology, the role of excess energy in electron injection at photovoltaic interfaces or the dynamics in quantum confined structures (e.g. multi carrier generation). The approach is that of a monograph, with a broad tutorial introduction and an overview of the recent results. This volume includes selected lectures presented at Symposium on Ultrafast Dynamics of the 7th International Conference on Materials for Advanced Technologies.




Ultrafast Dynamics in Molecules, Nanostructures and Interfaces


Book Description

Primary events in natural systems or devices occur on extremely short time scales, and yet determine in many cases the final performance or output. For this reason research in ultrafast science is of primary importance and impact in both fundamental research as well as its applications. This book reviews the advances in the field, addressing timely and open questions such as the role of quantum coherence in biology, the role of excess energy in electron injection at photovoltaic interfaces or the dynamics in quantum confined structures (e.g. multi carrier generation). The approach is that of a monograph, with a broad tutorial introduction and an overview of the recent results. This volume includes selected lectures presented at Symposium on Ultrafast Dynamics of the 7th International Conference on Materials for Advanced Technologies.




Modern Optics and Photonics


Book Description

Ligt propagation : from atomic to nuclear quantum optics / J. Evers [und weitere] -- Relativistic high-order harmonic generation / M.C. Kohler and K.Z. Hatsagortsyan -- Entangled light and matter waves via non-linear interactions / M. Macovei, G. Yu. Kryuchkyan and G.-X. Li -- Irreversible photon transfer in an ensemble of [symbol]-type atoms and photon diode / G. Nikoghosyan and M. Fleischhauer -- Dissipative chaos in quantum distributions / T.V. Gevorgyan [und weitere] -- Frequency chirped laser pulses in atomic physics : coherent control of inner and translational quantum states / G.P. Djotyan [und weitere] -- Strongly correlated quantum dynamics of multimode light coupled to a two-level atom in a cavity / T. Kumar, A.B. Bhattacherjee and M. Mohan -- Feedback-driven adiabatic quantum dynamics / A.E. Allahverdyan and G. Mahler -- Landau-Zener transition in nonlinear quantum systems / A.M. Ishkhanyan -- Multiple interactions in multilayered structures of nonlinear materials / D.A. Antonosyan and G. Yu. Kryuchkyan -- Integrated photonic device structures with nano-scale features : for sensitive applications / R.M. De La Rue -- One-, two-electronic and excitonic states in a quantum dots with nontrivial geometries : adiabatic description / K.G. Dvoyan, E.M. Kazaryan and H.A. Sarkisyan -- Planar plasmonic structures and non-linear metal-dielectic subwavelength waveguides / A.R. Davoyan, I.V. Shadrivov and Yu. S. Kivshar -- Computer algebra study of structural and symmetry properties of discrete dynamical systems / V.V. Kornyak -- Exotic few-body bound states in a lattice / D. Petrosyan and M. Valiente -- Slow light and phase transition in the array of atomic polaritons / I.O. Barinov [und weitere] -- Formation of narrow optical resonances using submicron-thin atomic vapor layers / D. Sarkisyan and A. Papoyan -- Modelling magneto-optical resonances in atomic rubidium at D1 excitation in extremely thin cells while maintaining a self-consistent set of theoretical parameters / L. Kalvans [und weitere] -- Laser isotope separation in atomic vapour. Photo-chemical methods vs. photo-ionization one / P.A. Bokhan [und weitere] -- Two-dimensional confined terahertz wave propagation in gap plasmon waveguide formed by two cylindrical surfaces / Yu. H. Avetisyan [und weitere] -- Broadband similariton : features and applications / A. Zeytunyan [und weitere]




Photoinduced Phase Transitions


Book Description

A new class of insulating solids was recently discovered. Whenirradiated by a few visible photons, these solids give rise to amacroscopic excited domain that has new structural and electronicorders quite different from the starting ground state. This occurrenceis called photoinduced phase transition, and this multi-authoredbook reviews recent theoretical and experimental studies of this newphenomenon.




Recent Advances in Technology Research and Education


Book Description

This book presents selected contributions to the 16th International Conference on Global Research and Education Inter-Academia 2017 hosted by Alexandru Ioan Cuza University of Iași, Romania from 25 to 28 September 2017. It is the third volume in the series, following the editions from 2015 and 2016. Fundamental and applied research in natural sciences have led to crucial developments in the ongoing 4th global industrial revolution, in the course of which information technology has become deeply embedded in industrial management, research and innovation – and just as deeply in education and everyday life. Materials science and nanotechnology, plasma and solid state physics, photonics, electrical and electronic engineering, robotics and metrology, signal processing, e-learning, intelligent and soft computing have long since been central research priorities for the Inter-Academia Community (I-AC) – a body comprising 14 universities and research institutes from Japan and Central/East-European countries that agreed, in 2002, to coordinate their research and education programs so as to better address today’s challenges. The book is intended for use in academic, government, and industrial R&D departments as a reference tool in research and technology education. The 42 peer-reviewed papers were written by more than 119 leading scientists from 14 countries, most of them affiliated to the I-AC.




Chemical Complexity


Book Description

This book provides an outline of theoretical concepts and their experimental verification in studies of self-organization phenomena in chemical systems, as they emerged in the mid-20th century and have evolved since. Presenting essays on selected topics, it was prepared by authors who have made profound contributions to the field. Traditionally, physical chemistry has been concerned with interactions between atoms and molecules that produce a variety of equilibrium structures - or the 'dead' order - in a stationary state. But biological cells exhibit a different 'living' kind of order, prompting E. Schrödinger to pose his famous question “What is life?” in 1943. Through an unprecedented theoretical and experimental development, it was later revealed that biological self-organization phenomena are in complete agreement with the laws of physics, once they are applied to a special class of thermodynamically open systems and non-equilibrium states. This knowledge has in turn led to the design and synthesis of simple inorganic systems capable of self-organization effects. These artificial 'living organisms' are able to operate on macroscopic to microscopic scales, even down to single-molecule machines. In the future, such research could provide a basis for a technological breakthrough, comparable in its impact with the invention of lasers and semiconductors. Its results can be used to control natural chemical processes, and to design artificial complex chemical processes with various functionalities. The book offers an extensive discussion of the history of research on complex chemical systems and its future prospects.




Advanced Computing


Book Description

This proceedings volume collects review articles that summarize research conducted at the Munich Centre of Advanced Computing (MAC) from 2008 to 2012. The articles address the increasing gap between what should be possible in Computational Science and Engineering due to recent advances in algorithms, hardware, and networks, and what can actually be achieved in practice; they also examine novel computing architectures, where computation itself is a multifaceted process, with hardware awareness or ubiquitous parallelism due to many-core systems being just two of the challenges faced. Topics cover both the methodological aspects of advanced computing (algorithms, parallel computing, data exploration, software engineering) and cutting-edge applications from the fields of chemistry, the geosciences, civil and mechanical engineering, etc., reflecting the highly interdisciplinary nature of the Munich Centre of Advanced Computing.




Science and Application of Nanotubes


Book Description

This series of books, which is published at the rate of about one per year, addresses fundamental problems in materials science. The contents cover a broad range of topics from small clusters of atoms to engineering materials and involve chemistry, physics, materials science, and engineering, with length scales ranging from Ångstroms up to millimeters. The emphasis is on basic science rather than on applications. Each book focuses on a single area of current interest and brings together leading experts to give an up-to-date discussion of their work and the work of others. Each article contains enough references that the interested reader can access the relevant literature. Thanks are given to the Center for Fundamental Materials Research at Michigan State University for supporting this series. M. F. Thorpe, Series Editor E-mail: thorpe@pa. msu. edu East Lansing, Michigan V PREFACE It is hard to believe that not quite ten years ago, namely in 1991, nanotubes of carbon were discovered by Sumio Iijima in deposits on the electrodes of the same carbon arc apparatus that was used to produce fullerenes such as the “buckyball”. Nanotubes of carbon or other materials, consisting ofhollow cylinders that are only a few nanometers in diameter, yet up to millimeters long, are amazing structures that self-assemble under extreme conditions. Their quasi-one-dimensional character and virtual absence of atomic defects give rise to a plethora of unusual phenomena.




Plasmonics and Plasmonic Metamaterials


Book Description

Manipulation of plasmonics from nano to micro scale. 1. Introduction. 2. Form-Birefringent metal and its plasmonic anisotropy. 3. Plasmonic photonic crystal. 4. Fourier plasmonics. 5. Nanoscale optical field localization. 6. Conclusions and outlook -- 11. Dielectric-loaded plasmonic waveguide components. 1. Introduction. 2. Design of waveguide dimensions. 3. Sample preparation and near-field characterization. 4. Excitation and propagation of guided modes. 5. Waveguide bends and splitters. 6. Coupling between waveguides. 7. Waveguide-ring resonators. 8. Bragg gratings. 9. Discussion-- 12. Manipulating nanoparticles and enhancing spectroscopy with surface plasmons. 1. Introduction. 2. Propulsion of gold nanoparticles with surface plasmon polaritons. 3. Double resonance substrates for surface-enhanced raman spectroscopy. 4. Conclusions and outlook -- 13. Analysis of light scattering by nanoobjects on a plane surface via discrete sources method. 1. Introduction. 2. Light scattering by a nanorod. 3. Light scattering by a nanoshell. 4. Summary -- 14. Computational techniques for plasmonic antennas and waveguides. 1. Introduction. 2. Time domain solvers. 3. Frequency domain solvers. 4. Plasmonic antennas. 5. Plasmonic waveguides. 6. Advanced structures. 7. Conclusions




Ultrafast Nonlinear Optics


Book Description

The field of ultrafast nonlinear optics is broad and multidisciplinary, and encompasses areas concerned with both the generation and measurement of ultrashort pulses of light, as well as those concerned with the applications of such pulses. Ultrashort pulses are extreme events – both in terms of their durations, and also the high peak powers which their short durations can facilitate. These extreme properties make them powerful experiment tools. On one hand, their ultrashort durations facilitate the probing and manipulation of matter on incredibly short timescales. On the other, their ultrashort durations can facilitate high peak powers which can drive highly nonlinear light-matter interaction processes. Ultrafast Nonlinear Optics covers a complete range of topics, both applied and fundamental in nature, within the area of ultrafast nonlinear optics. Chapters 1 to 4 are concerned with the generation and measurement of ultrashort pulses. Chapters 5 to 7 are concerned with fundamental applications of ultrashort pulses in metrology and quantum control. Chapters 8 and 9 are concerned with ultrafast nonlinear optics in optical fibres. Chapters 10 to 13 are concerned with the applications of ultrashort pulses in areas such as particle acceleration, microscopy, and micromachining. The chapters are aimed at graduate-student level and are intended to provide the student with an accessible, self-contained and comprehensive gateway into each subject.