Ultrasound B-mode Imaging: Beamforming and Image Formation Techniques


Book Description

Ultrasound medical imaging stands out among the other diagnostic imaging modalities for its patient-friendliness, high temporal resolution, low cost, and absence of ionizing radiation. On the other hand, it may still suffer from limited detail level, low signal-to-noise ratio, and narrow field-of-view. In the last decade, new beamforming and image reconstruction techniques have emerged which aim at improving resolution, contrast, and clutter suppression, especially in difficult-to-image patients. Nevertheless, achieving a higher image quality is of the utmost importance in diagnostic ultrasound medical imaging, and further developments are still indispensable. From this point of view, a crucial role can be played by novel beamforming techniques as well as by non-conventional image formation techniques (e.g., advanced transmission strategies, and compounding, coded, and harmonic imaging). This Special Issue includes novel contributions on both ultrasound beamforming and image formation techniques, particularly addressed at improving B-mode image quality and related diagnostic content. This indeed represents a hot topic in the ultrasound imaging community, and further active research in this field is expected, where many challenges still persist.




Ultrasound B-mode Imaging: Beamforming and Image Formation Techniques


Book Description

Ultrasound medical imaging stands out among the other diagnostic imaging modalities for its patient-friendliness, high temporal resolution, low cost, and absence of ionizing radiation. On the other hand, it may still suffer from limited detail level, low signal-to-noise ratio, and narrow field-of-view. In the last decade, new beamforming and image reconstruction techniques have emerged which aim at improving resolution, contrast, and clutter suppression, especially in difficult-to-image patients. Nevertheless, achieving a higher image quality is of the utmost importance in diagnostic ultrasound medical imaging, and further developments are still indispensable. From this point of view, a crucial role can be played by novel beamforming techniques as well as by non-conventional image formation techniques (e.g., advanced transmission strategies, and compounding, coded, and harmonic imaging). This Special Issue includes novel contributions on both ultrasound beamforming and image formation techniques, particularly addressed at improving B-mode image quality and related diagnostic content. This indeed represents a hot topic in the ultrasound imaging community, and further active research in this field is expected, where many challenges still persist.




Diagnostic Ultrasound Imaging: Inside Out


Book Description

Diagnostic Ultrasound Imaging provides a unified description of the physical principles of ultrasound imaging, signal processing, systems and measurements. This comprehensive reference is a core resource for both graduate students and engineers in medical ultrasound research and design. With continuing rapid technological development of ultrasound in medical diagnosis, it is a critical subject for biomedical engineers, clinical and healthcare engineers and practitioners, medical physicists, and related professionals in the fields of signal and image processing. The book contains 17 new and updated chapters covering the fundamentals and latest advances in the area, and includes four appendices, 450 figures (60 available in color on the companion website), and almost 1,500 references. In addition to the continual influx of readers entering the field of ultrasound worldwide who need the broad grounding in the core technologies of ultrasound, this book provides those already working in these areas with clear and comprehensive expositions of these key new topics as well as introductions to state-of-the-art innovations in this field. - Enables practicing engineers, students and clinical professionals to understand the essential physics and signal processing techniques behind modern imaging systems as well as introducing the latest developments that will shape medical ultrasound in the future - Suitable for both newcomers and experienced readers, the practical, progressively organized applied approach is supported by hands-on MATLAB® code and worked examples that enable readers to understand the principles underlying diagnostic and therapeutic ultrasound - Covers the new important developments in the use of medical ultrasound: elastography and high-intensity therapeutic ultrasound. Many new developments are comprehensively reviewed and explained, including aberration correction, acoustic measurements, acoustic radiation force imaging, alternate imaging architectures, bioeffects: diagnostic to therapeutic, Fourier transform imaging, multimode imaging, plane wave compounding, research platforms, synthetic aperture, vector Doppler, transient shear wave elastography, ultrafast imaging and Doppler, functional ultrasound and viscoelastic models




Diagnostic Ultrasound


Book Description

All healthcare professionals practising ultrasound in a clinical setting should receive accredited training in the principles and practice of ultrasound scanning. This second edition of Diagnostic Ultrasound: Physics and Equipment provides a comprehensive introduction to the physics, technology and safety of ultrasound equipment, with high quality ultrasound images and diagrams throughout. It covers all aspects of the field at a level intended to meet the requirements of UK sonography courses. New to this edition: • Updated descriptions of ultrasound technology, quality assurance and safety. • Additional chapters dedicated to 3D ultrasound, contrast agents and elastography. • New glossary containing definitions of over 500 terms. The editors and contributing authors are all authorities in their areas, with contributions to the scientific and professional development of ultrasound at national and international level.




Diagnostic Ultrasound, Third Edition


Book Description

This popular text provides a comprehensive, yet accessible, introduction to the physics and technology of medical ultrasound, with high quality ultrasound images and diagrams throughout. Covering all aspects of the field at a level that meetings the requirements of accredited sonography courses, it is ideal for both trainee and qualified healthcare professionals practising ultrasound in a clinical setting. Building on the content of previous editions, this third edition provides the latest guidance relating to ultrasound technology, quality assurance and safety and discusses the latest techniques.




Ultrafast Ultrasound Imaging


Book Description

This book is a printed edition of the Special Issue "Ultrafast Ultrasound Imaging" that was published in Applied Sciences




Clinical Ultrasound, 2-Volume Set E-Book


Book Description

Clinical Ultrasound has been thoroughly revised and updated by a brand new editorial team in order to incorporate the latest scanning technologies and their clinical applications in both adult and paediatric patients. With over 4,000 high-quality illustrations, the book covers the entire gamut of organ systems and body parts where this modality is useful. It provides the ultrasound practitioner with a comprehensive, authoritative guide to image diagnosis and interpretation. Colour is now incorporated extensively throughout this edition in order to reflect the advances in clinical Doppler, power Doppler, contrast agents. Each chapter now follows a consistent organizational structure and now contains numerous summary boxes and charts in order to make the diagnostic process practical and easy to follow. Covering all of the core knowledge, skills and experience as recommended by the Royal College of Radiologists, it provides the Fellow with a knowledge base sufficient to pass professional certification examinations and provides the practitioner with a quick reference on all currently available diagnostic and therapeutic ultrasound imaging procedures. - Individual chapters organized around common template therefore establishing a consistent diagnostic approach throughout the text and making the information easier to retrieve. - Access the full text online and download images via Expert Consult. - Three brand new editors and many new contributing authors bring a fresh perspective on the content. - Authoritative coverage of the most recent advances and latest developments in cutting edge technologies such as: colour Doppler, power Doppler, 3D and 4D applications, harmonic imaging, high intensity focused ultrasound (HIFU) microbubble contrast agents, interventional ultrasound , laparoscopic ultrasound brings this edition right up to date in terms of the changes in technology and the increasing capabilities/applications of ultrasound equipment. - New sections on musculoskeletal imaging. - Addition of coloured text, tables, and charts throughout will facilitate quick review and enhance comprehension.




FRCR Physics Notes


Book Description

Comprehensive medical imaging physics notes aimed at those sitting the first FRCR physics exam in the UK and covering the scope of the Royal College of Radiologists syllabus. Written by Radiologists, the notes are concise and clearly organised with 100's of beautiful diagrams to aid understanding. The notes cover all of radiology physics, including basic science, x-ray imaging, CT, ultrasound, MRI, molecular imaging, and radiation dosimetry, protection and legislation. Although aimed at UK radiology trainees, it is also suitable for international residents taking similar examinations, postgraduate medical physics students and radiographers. The notes provide an excellent overview for anyone interested in the physics of radiology or just refreshing their knowledge. This third edition includes updates to reflect new legislation and many new illustrations, added sections, and removal of content no longer relevent to the FRCR physics exam. This edition has gone through strict critique and evaluation by physicists and other specialists to provide an accurate, understandable and up-to-date resource. The book summarises and pulls together content from the FRCR Physics Notes at Radiology Cafe and delivers it as a paperback or eBook for you to keep and read anytime. There are 7 main chapters, which are further subdivided into 60 sub-chapters so topics are easy to find. There is a comprehensive appendix and index at the back of the book.




Multimodality Imaging Innovations In Adult Congenital Heart Disease


Book Description

This book focuses on congenital heart disease (CHD) and emerging imaging technologies. It covers all clinically relevant aspects of the fascinating new cardiac imaging technologies, including a comprehensive explanation of their basic principles, practical aspects of novel clinical applications, and detailed descriptions of specific uses in the broad spectrum of clinically important adult CHD. Innovations and emerging technologies for diagnosis and therapeutics, evaluation and treatment are continually evolving, and due to these advances in non-invasive diagnosis, there has been a significant improvement in the survival rates for CHD patient. Novel approaches to trans-catheter interventions and advances in echocardiography, MRI and CT imaging are being developed and incorporated into routine clinical practice, while emerging three-dimensional printing technologies are fundamentally affecting patient care, research, trainee education, and interactions between multidisciplinary teams, patients, and caregivers. In addition, translational technologies on the horizon promise to take this nascent field even further. Exploring the applicability of these emerging technologies in improving our understanding of complex congenital cardiac defect anatomy and physiology will provide new treatment options for this unique population. Written by experts in the field who are also involved in patient care, this book discusses the practical application of innovations in advanced multimodality imaging in the daily clinical routine and offers tips and tricks for beginners.




Innovative Ultrasound Imaging Techniques


Book Description

This book provides an understanding of ultrasound imaging principles and how the field is evolving to better probe living systems. Today, widely-used imaging systems visualize structures and blood flow within the body in real-time. Signal analysis, hardware and contrast agent innovations are extending the capacity of ultrasound to assess tissue elasticity, to enable three-dimensional viewing of moving structures and to detect vessels smaller than the wavelength-limited resolution. Techniques are also being designed so that we are less impeded by bones in the sound path, as well as to combine light and sound to detect optically-absorbent structures within the body. After an introductory chapter reviewing the key basic concepts, each chapter presents a detailed explanation focusing on a specific set of key principles and then shows the related techniques in each domain that are currently being refined to evaluate living systems in greater depth.